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A PROGBAM FOR CAICUIATM OPTI.JM D]IMBIOI‘B OF AIPHA

J. P. Nichols
D. R. Winkler

ABSTRACT

A method and computer program were developed for calcu-
lating the creep and optimizing the dimensions of capsules
filled with alpha-emitting radioisotopes. The method solves
an integral equation that was developed assuming linear accu-
milation of partial creep lives and relating life to time-
dependent stress and temperature using the ILarson-Miller pa-
rameter. The computer program, CAPSUL, is written in Fortran
language for the IBM 360/75 computer. The program mekes a
least squares fit of the creep life function using conven-
tional constant stress, constant temperature creep data.
Dimensions of capsules having maximun thermal power per unit
of weight, volume, or area are calculated for a given creep
life ard pressure~temperature history using a mumerical
Iagrange Multiplier formilation. The program also calculates
the 1life to a prescribed strain for capsules of givea dimen-
sions and pressure-temperature history. The method has been
used to analyze creep data for the alloys 304 stainless
steel, Hastelloy N, Cb-1% Zr, FS-85, and T-222,

1.0 INTRODUCTION

In capsules conta:ining alpha-emitting radioisotopes for use in space
power packages, it is desirable to provide maximum power per unit of
weight, volume, or projected area within the constraints imposed by the
need to maintain capsule integrity during normal operation and in the
event of one or more accidental conditions. Because of the contimuous
generation of helium gas, together with decay of the thermml power, such
capsules are characterized by time-dependent stress and temperature. Very
high initial temperatures cause creep to be an important consideration in
the design.

A model and computer program were formulated for calculation of the
strain and optimum dimensions of capsules within the desired constraints.
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The following sections will describe the model and the computer program
an2 present an analysis of experimental creep data that tenmd to confirm
the model. A glossary of symbols, example problems, and a program list
are included as appendices.

2.0 MATHEMATICAL MODEL

We wish to develop a phenomenologi~al model of creep resulting from
time-verying stress and temperature in certain metals for which the only
available experimental data ave ultimate strength properties at low tem-
peratures and constant load, constant temperature creep properties at
high temperatures. A precise aneiysis of the probiem requires an equation
of state that relates strain rate to stress, temperature, strain, and
time. No single equation is available, but approximate equations may be
developed for restricted classes of materials. Or2 such equation, which
has been substantiated for a number of mtetalsl’2 and plastics,3 assumes
that the fractional creep life for a given stress and tempersture is inde-
pendent ot other fractions sustained under different conditions and that
these fractions may be accumlated linearly. Stated mathematically:

dat
AL C OO W
)
where
6{0,T] = a function, hereafter called the "creep life function,”

that determines the 1ife to a prescribed strain or rupture
for a given stress, o, and temperature, T,

t

time since application of the loaaq,

©® = resultant life to prescribed strain or rupture for time-
varying stress and temperature.

A suitable creep life function can be determired by empirically
fitting an equation to experimental data for strecs as a functicn of a
time-temperature parameter. Several time-temperature parameters, including
those of Orr, Sherby, and Dorn; Manson and fiaferd; and Iarson and Miller,
have been evaluated for this purpose; and it was found that the larson-Miller




parameter proviced the most accurate correlation for a wide selection of
mtals.u Larson and Miller'5 have related the creep life at a given stress
to the absolute temperature by an eQquation that may be derived from the
Arrhenius rate law,

T 1n k9 = constant, larson-Miller parameter .

The constant X has the physical connotation of "maximmum rupture rate."

The comacn logarithm of XK is called the ILarson-Miller constant and is in
the rasage of 10 to 3¢ for most metals when time is measured in hours.

The development of the creep life function for the present model is
illustrated in Fig. 1. Shown is a typical plot relating the logarithm of
mrasured nominal, unjaxial stress to the Larson-Miller parameter. The
f:reép data are obtained at temperatures generally above one-third the
absolute melting temperature by measuring the time to a specified strain
or rupture wder conditions of constant load (constant nominal stress)

and temperature. The data for ultimate strength (or stress for a specified

"instantaneous” elastic and plastic strain) as a function of temperature
are determined under conditions of constant imposed strain rate which is
not necessarily the "natural" strain rate measured in creep experiments.
We have assumed that the actual life measured in ultimate strength tests
is a good approximation of the equivalent creep life, particularly for
those materials which exhibit little strain hardening (nearly constant
nominal stress for nominal strain groater than the yield), because (1.)
the life approximates unity and has little effect on the X product, and
(2) the stress is insersitive to the ILarson-Miller parameter in the
low-temperature range at whuch the ultimate strength deta are used to
supplerent creep data,

As temperature increases the creep (or time dependent) strain for a
given finite life becomes a progressively larger fraction of the total
strain and the fractional strain from elastic and "fnstantaneous" plastic
strain becomee progressively more negligible. At high temperatures the
logarithis of the applied etress for many nnteriatlsh’s is a linear function
of the ILarson-Miller parameter having intercept ln & and slope m. We
have assumed that the creep component of stress, ¢ o? has this linear form
at all temperatures.
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At temperatures below approximately one-third the absolute melting

temperature the creep strain becomes negligible with respect to the

elastic and plastic strain. In thLio region the stress is generally con-
stant, g, over e large domain of the parameter. This behavior, as well

as the behavior at high temperatures, is acccxmodated by a resultant

stress function that is generated by adding reciprocels of the time
dependent (creep) and time independent components of stress. An empirically
fitted constant, 7, provides for appropriate curyature in the transition
region.

The cumputer program, to be described in the next section, has pro-
vision for determination of the constants, &, m, and K by least squares
analysis of a set [0, T, 0] of creep data. The constants o, and y are
selected by the investigator by analysis of a curve of ultimate strength
as & function of temperature end/or by iteration to determine the best
fit of combined ultimate strength-cre«pn data in a time-temperature domain
of interest.

The general formlation of the approximete equation of state is
obtained by substituting the creep life function (Fig. 1) in Zq. (1) and
making provisions for individual safely factors on ultimate strength, Su’
and creep strength, Sc'

1

7oiI( )

. y 7
S 7 a0’ a(t)
S dt =D (2)

.? 7
l =K {
) ORTOﬁy - Su7 o’ (t)

In principle, the integral in Eq. (2) can be evaluated mumerically
for any time behavior of stress and temperature. For radioisotcpe fuel
capsules we have chosen to neglect the effect of strain on the volume of
the capsule and reinforcing effects hy layers other than the primary
structural material. End effects are also neglected since the capsules
have length-to-diameter ratio greater than 2. The stress is considered
t0 be the maximum nominal tensile stress, the circumferential stress at
the inner well of the primary container

o) - B RO) + R(3). ] (3)

R(4)° - R(3)




vhere
P = preésure in the capsule,
E = weld efficiency,
R(4) = outer radiuz of. primary container,
R(3) = inner radius of'prinnry container.

The time-dependent pressure is calculated from the ideal gas law
since the helium gas is well above the critical point. The volme of
gas is the void volums at the center of the capsule plus any additional
void in the fuel region. -The moles of gas are those that are ﬁresent
initially plus those that are formed by decay of the radioisotope.

The heat flux is in transient equilibrium with the power in capsules
containing ilong-lived radioisotopes. Asszuming that the overall heat
transfer coefficients do not vary appreciably with temperature, the
temperature of the helium gas and the conteiner wall vary with time in
the following way: '

P(t) = Te + (T° - Ta)e ™, (4)

where
T® = initial temperature,
Ta = ambient temperature,
A = decay constant,

Explicit formuilse for the individual temmeratures, vclumes, etc.,
are given in the following section which describes the program, CAPSUL.

Equation (2) {educes o one previously derived by Kennedy6 under
conditions of high constant temperature and constant stress rate, o.
High temperature implies ¢ = ot << 7, therefore, if the safety factors
are unity, E3. (2) reduces to:

PN L@t

ot ;& 1o \EIT '

e (2 s £, 6
° i

where = and a/Km are the constants "n" and "A" used by Kennedy.

mT
Kennedy,6 and later McCoy,7’8’9 verified that this equation is valid

for several meterials (including 304 and 309 stainless steels, T-111,




T-222, and Cb-1% Zr) by comparing creep rupture lives obtained at high
constant temperatures and constant stress with those at the same tem-
perature but constant stress rate. These data serve, indirectly, to
velidate EQ. (2). The use of the CAPSUL program to re-evaluate these
constant stress rate experiments by direct numerical integration is
described in Sect. 4.3. The adequacy of the model can be tested for
other materials and at lower temperatures by performing experiments in
which stress and temperature are knowr functions of time and evaluating
the integral in Eq. (2) either analytically or numerically.

3.0 CAPSUL PROGRAM

CAPSUL is a *o*tnan.prﬂgram for the IBM 3(0/7; computer, The program
calculatea \He‘b‘Le tw a prescrlbed creep strain and optimum dimensions of
alpha *udi:ieotope el C&anl&S ’/ﬂosea to varying stress and temperature.
The capsunnsr g; 13. 2, are ngnt cyli ndcrs with multilayered walls and
elliptical‘en\:vapg.‘ Independer V{Tiables are RO, the inside radius of
the capsule;‘i(g)J,the thiciness of the fuel layer; and X(4), the thickness
of the primari container wall. ,

The program has eight principal and eleven subsidiary subroutines.
ISTSQ determines constants (@, K, m) in an equation for rupture life (or
life to a prescribed strain) as a function of stress and temperature by a
least sqQuares fit of creep=-ultimate strength data. Once the constants are
determined, ISTSQ is normally oypassed for calculations with the same
material and design life criterion. The subroutine MAXlO uses 8 nurerical
[agrange multiplier formulation to find & maxinum of one of three thermal
powe:: functions (thermal power per unit projected area of a flat array of
capsules, per unit volume of a rectangular parallelepiped that encloses =
capsule and its auxiliary structural material, or per unit weight of capsule,
each calculated in subroutine WR) subject to a time-integrated stress-
temperature constraint (subroutine DR) that is dictated by 2 prescribed
rupture or strain life. The subroutine RZERO calculates the allowable in-
side radius as a function of thermal power, if it is required thet the
capsule surface temperature not exceed a given value if the capsule is

buried in an infinite medium of =arth. The subroutine LIMIT examinec the
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side radius as & function of thermal power, if it is required thet the
capsule surface temperature not exceed a given value if the capsule is

buried in an infinite medium of earth. The subroutine LIMIT examines the
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dimensions of the optimized capsules for adherence to limits dictated by
engineering considerations. If the wall thickness or radius of the capsule
is too small or too large, the appropriate dimension is fixed at its
nearest limit and MAX or the subroutine DF is used to determine the maximum
power funcition in the remsining vaeriasble(s). The subroutine DF calculates
a single remaining variable to satisfy the stress-tempcrature constraint.
The program subroutine THETAC calculates the rupture life or life to a
prescribed strain of & capsule with specified dimensions. It is used to
determine the life of ~apsules that have been optimized ca the basis of
another criterion. The subsidiary programs are WHT, which calculates the
weight of the fusl capsule; CONVERT and VSU, which convert the capsule
dimension varisbles to and from the MAY nomenclature; and SETUP, GTAIAM,
VECT, CONVG, OUTPUT, ARTTH, MATQ, and STEP, which are used by MAX. Iibrary
subroutines are SQRT, ABS, AILCG, AIOG10O, SETFAULT, and EXP.

The main program, CAPSUL, reads &nd writes all input data, guides
the selection of subroutines for prescribed options, and prints pertinent
results. The program operates in any of four sequences. Each sequence
selection requires a complete complerent of data cards and is termed a
"case."” There is no upper limit on the allowable number of cases per run.

The sequence for a given case is determined by an input integer,
MOPT. The first sequence (MOPT = 1) is used to provide a fit of tae creep
life function {Fig. 1) oy a least squares analysis of creep data. The
second sequence (MOPT = 2) fits the creep life function and calculates
optimum capsule dimensioas for a prescribed life. The third sequence
(MOPT = 3) calculates optimum capsule dimensions when the constants of the
creep life function are given as input. The fourth sequence (MOPT = 4)
calculates the life (or safety factor for a prescribed life) of a capsule
with given dimensions and material properties. The following sections
will describe the formulation of the subroutines for these sequences and
provide input information. A list of the program is given in Appendix C.

3.1 Least Squares An~lysis of Creep Data (MOPT = 1)

This sequence begins with the reading of the constants MOPT, K,
SIGU (au) , and GAMMA (y). Next, the programs reads and stores information
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from K data cards containing K triples [SIGMA(I), T(I), THETA(1)] of
creep and/or ultimate strength date. Values of SIGMA(I) greate- than
SIGU are not permitted. The main program calls subroutine ISTSQ (which,
in turn, calls MATQ) and values of the fitted constants (ALPHA, XM, XKO)
are computed. The main program then computes the following quantities:

1.

The value of stress, SIGB(I), predicted by the fitted creep
life function for each pair [T(I), THETA(I)].

The vaelue of life, THETB(I), predicted by the fitted creep
1life function for each pair [SIGMA(I), T(I)].

The Iarson-Miller parameter,

IMP({I) = T(I) log,q [ (xx0)(THETA(I))], for each triple of
aata.

DLTH(I), the common logarithm of the ratio THETA(I) to
THETB(I).

DISG(I), the common logerithm of the ratio SIGMA(I) to
STGB(I).

SELTH, SEISG, and RESIG, the standard errors in the common
logarithm of creep life, common logarithm of stress, and

relative stress, respectively.

The Qquantities SELTH, SELSG, and RESIG are calculated as follows:

—— [ 1 EZ’= l (SIGMA(;) - s16B(1) \ ]

K 1/2
SELTH = ['g".l:—;.; Y, (orm(T))? ]
=1
K 1/e
SEISG = [f%—'j Y (p1se(1))° ]
F=i

1/2

3IGB(I)

The program prints the values K, SIGU, GAMMA, ALPHA, XM, XKO, SELTH,
SEISG, and RESIC end the array I, SIGMA(I), T(I), THETA(I), MP(I),
THETB(I), SIGB(I), DLTH(I), DILSG{I).
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The program then reads another data card containing the integer K.
If the new value of K is greater than the previous value, the program
reads an additionel number of triples of creep data equal to the difference
in the two values of K. These new data are stored together with the
previous data and the entire calculational procedure is repeated. This
procedure, which permits a sequential analysis of data which sre ordered
with respect to one of the variables [ususlly THETA(I)], continues until
the program reads a card with K = 0. Aifter reading a card with K = O, the
program proceeds to the next case,

Execution time of this sequence is less than one minute for analysis
of 500 (the maximum allowable) number of triples of creep data that are
read in at a single time.

3.1.1 ISTSQ

This subroutine prepares the elements of a matrix equation for
determination of the constants ALPHA(x), XM(M), and XXD(K) by a leest
squares analysis of the creep life function (Fig. 1). The function is
linearized by writing it in logarithmic fcrm (see Appendix C). This
procedure is an approximation in the sense that the sum of the squares
of the residuels of the logarithms are minimized rather than those of
the original variables.

3.1.2 M\TQ

This subroutire solves the matrix equation AX = Y for X using
modified Gaussian elimination (pivotal reduction using colummn pivots). A

CO-0OP description of this subroutine is given by Clark and Kbm.lo

sl Input Information

The sequence, MOPT = 1, uses only the data cards of type "e", "b",
and "c", shown in Table 1. The cards of type "a" and "b" are followed
by K cards of type "c¢". For sequential analysis the initial set is
Tollowed by stacks having a single card of type "b" frllowed by K'-K

cards of type "c". Here, K' and X are the present and immediately pre-
ceeding values of K, respectively. The last card of type "c¢" in a case




Table 1. The Format of Input Data Cards for the CAPSUL Program

Card

Type Format MOPT Data

a 3R 1,2,3,4 MOPT, NMAX, NQ

b 13,2F10.0 1,2 K, SIGU, GAMMA

c 3F20.0 1,2 SIGMA(I), T(I), THETA(I)

d €r10.0 2,3,4 GAMMA, RR, E, PS, TS, H, ZM, TA
e 8F10.0 2,3,k T8, A, ETA, BETA, DELTA, C, G, TAl
f E10.3, 2I3 2,3,4 IAMDA, N, NN

g 9. 2,3,b4 X(1), I=1,9

h 9F8.0 2,3,4 P(1), I =1,9

i 9F8.0 2,3, ¥x{I), I =2,i0

b 3E10.0 3.4 ALPHA, YK, XM

k 4F10.0 2,3 Y4U, XLL, R3U, R3L

1 4LE20.0 2,3,4 SIGU, SC, SU, PHI

m 4220.0 2,3 Q, DELRO, DEIX2, DELXL

n 4E20.0 2,3 TAU, T81, T82, XID

o) LE2C.0 2,3 RO, x{2), X(4), THET

P 5Ik 2,3 IX, NIAM, NITER, ITER, LMOST
q 4F10.0 2,5 G, C, CRIT, AIAM

r 4E20.0 N Q, DELTH, DELOME, THMAX

s L£20.0 n TAU, T81, XID, RO

t 3E20.0 L X(2), x(4), THEV
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is followed by & card of type "b" with K = 0. The last case is followed
by a card of type "a" with MOPT = O.

3.2 Calculetion cf Capsule Dimensions for Maximum Specific Power
(MOPT = 2 or 3)

The sequence begins by reading and writing MOPT, NMAX, and NQ plus
L6 normelly unchanging constants. If MOPT = 2, the program calls the
entire sequence for MOPT = 1 to generate the three constants in the creep
life function from experimental data; if MOPT = 3, these constants are
read in and written. The program then reads and writes an additional 29
constants. Next, the program iterates (calling VSU and DR) to modify
the initial estimates of X(2) and X(4) such that the constraining function
is approximately satisfied (0.3 =D =<4.,0). The iteration proceeis by
multiplying the previous value of X{2) by 0.95 if D is too large or by
multiplying the previous X(2) by 1.05 and the previous X(4) by 0.95 if D
is too small. The calculation stops, prints pertinent data, and proceeds
to the next case if an appropriate value of D is not determined in 100
iterations.

The subroutine VSU generates a set of independent variables [AIF(K)
and their increments, DEL(K) and WEL(K)] for the MAX format from the
capsule-dimension variables. The set of capsule-dimension variables to
be used in a case is determined by the integer NMX.

NMAX = 1 Variables are RO, X(2), and X(4).
NMAX = 2 Variables are RO and X(2).
NMAX = 3 The outer redius R(8) is specified. This

option is uscd to generate capsules with given

outside dimensions.
NMAX = 4 The radius R(3) is specified.

NMAX =5 The radius RO is to be computed by the sub-
routine RZERO, assuming that the capsule is
buried in an infinite medium.
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The subroutine DR performs &8 mumerical integration of Eq. {2) and
generates a value of the constraining function D for a current set of
variables., The subroutine DR calls the subroutine CONVERT if NMAX # O
and Q # 0. The subroutine CONVERT reconverts the MAX variables to capsule
dimensions, depending on the value of NMAX. If NMAX = 5, the subroutine
CONVERT calls the subroutine RZERO to generate a burial-limited value of
RO that is compatible with the current values of X(2) and X(&4).

The mein program calls the subroutine MAX if values of the variables
are determined that approximatcly satisfy the constraining equation. MAX
uses a numerical lagrange multiplier formulation to find stationary values
of the function W subject to the constraining equation D = C (C is the
constrained velue). The nmumerical technique seeks 8 minimum in a defined
function YSQ by making successive linear approximations along the path of
steepest descent. The function YSQ is the siuare of a vector that is zero
when the constraining equation is sctisfied and the gradients of the
functions U and W are parallel, the condition for a local maximum or
minimum in the function W. The function W is to be maximized in the
present calculation; the minimum value s zero if X(2) = 0. The calculation
proceeds by making outer and inner iterations. The outer iterations
(counted by M) are steps in the domain ¢z’ the function YSQ resulting from
the linear approximation. Inner iterations (counted by LSTOP) prevent
overstepping which might resulf in a divergent sequence.

The subroutine MAX calls the subroutines DR and WR to generate values
of the constraining function D and the thermal power function W for use
in tests and numerical computation of derivatives. The function W for
e given case is chosen by the input integer NQ:

R =1 Thermal power ver unit of projectec area
(w = WI).

R =2 Thermal power per unit volume af a circumscribed
rectangular parallepiped (W = W2).

M =3 Thermel power per unit of weight (W = W3).

After each iteration, MAX writes current values of the following
quantities:
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M umber of the outcr iteration.

D Value 57 the constraining function.

W ~ VYelue of the thcrmal power function (W1, W2,
or W3; lependiag on IG) that is to be
meximized.

Ys& - The functisn ¥hich has a value of zero

st the Cesired soiution point. The square

of & vector ¥,

Z YSQ-JQ (eQuaiAto ¥sq¢ for C = 1).
LSTO? Fumber of tnke inner iterstion within the

outer iteration X.
Y(K) Components of fhe solution vector Y.
AIF(X}, K = 1,¥NR Values of the infependent yariables and the
Iagrange rultipiier. |
R(1), Z =0,9 Cuter radius of the nine regions of the

cepsule.

L Iengih of the capsule.
AV2 Thermal power of the cepsule.
Wi, W2, W3 The specific {ermal power functions.
WT Weight of th: capsule.

The MAX calculation stops when either the function YSQ becomes
smaller than & prescribed convergence criterion, (CRIT)E, or a prescribed
mumber of inner (M = ITER} and outer ( IMOST =< ISTOP) iterations is exceeded.
It is recommended that the present type of calculation be stopped by the
number of iterations since it is very diffiéult to predict an ecceptable
maximum value of the solution vector. The selection of a meximum allowable
number of iterations has one disadvantage; it is often the case that
variables determined in other than the last iteration provide a better
solution of the problem. Since the properties of the capsule are completely
described afier each iteration, the "best" set of dimensions can be
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determined by reviewing the printed matter and selecting the iteration
for which (1) the constraint D = 1.00 is approximately satisfied, (2) the
value W is maximum, and (3) YSQ is minimum,

When the MAX calculation stops, control is returned to the main
program. The last set of calculated dimensions are then examined by the
subroutine LIMIT to determine if the varisbles R{3) and ¥(4) are within
the preselected domeins R3L = R(3) = F3U and X4L = X(4) =Xu4U. If the
variables [first X(4), then R(3)] are too small or too large, the
appropriate dimension is fixed at its nearest limit; NMAK is changed to
reflect a decrease in the number of independent variables; and control is
returned %o the main program. If the previous value of NMAX was 1 (new
value 2 or 4), the entire calculation is repeated (starting with the
iteration to determine suitable values of the variables and proceeding
into the MAX subroutine) using the last computed values of RO and X(4)
or X(2) and X(4) as initial estimates. If the previous value of NMAX
was 2, 3, 4, or 5, the routine DF is called to calculate a value of the
single remaining independent variable, X(2), that satisfies the constraining
equation, DEH = 1.00. When the calculation is completed, the mein program
writes a f'inal 1ist of the variabies; these numbers are different from
those computed in the last MAX iteraticn only if the program DI' has been
called.

The MAX calculational procedure does not insure convergence to the
constrained maxirmum value of the function W, 1If the investigator is
unsure of the neighborhood of the solution point, he should submit
several cases with different initial estimates of the variables. If
results are erratic, the tolerance limits on the functions (PHI and Q)
may not be sufficiently ssall. Incremente in the variables (DELRC, DEIX2,
and DEIX4) must be chosen such as to ceuse only small changes in the
functions.

The execution time of this sequeuce for 100 itcrations (inner plus
outer) with 100 initial ir.rements (N) in the domain of integration is
approximately 3.5 minutes. The execution time is approximately propor-
tional tc the product of ITER and N.
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30201 :D;R

Subroutine DR calculates the value, DH, of the constraining function,
D, using Simpson's rule with N increments. An abbreviated formulation of
the function, the more important internal dependent variables (the integrand
and stress and temperature functions) follows. More specific formilations
are relegated to the list of the subroutine (Appendix C). Symbols are
defined in Appendix -.

TERM
DH= [ Fat
TNIT
F=kK [ ?au ] [ qu7 - Su7o7 ]
2 2
o [ 28558 [ g ae)

x [TA + (TO - m)e"’"T]

Th = TA + (Tho - TA)e™ M

8
AvVe 1 R(J
™o =16 + 5 Eh m[mﬁ'ﬂ]

J =

AV2e

R VRS R CIECEEa e s £ |

DR doubles the number of increments in the domain of integration a
maximum of 16 times to satisfy a convergence criterion, PHI. The input
number PHI is compared to the ratio of the difference in the last two
values of D to the last value. The statement "failed to converge" is
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written if 16N increme:ts are not sufficient. The library subroutine
SETFAULT is used to set exporential underflows to zero.

The subroutine DR wiil accommodate functions other than those for
vhich it is primarily intended (constant stress and/or temperature and
constant derivatives of stress) by such devices as redefining the constants,
setting T8 = TA, and dropping terms by setting leading constants equal
tc zero. In meking such formulations, one must avoid negative arguments
of logarithms (including values that are to be raised to a power) and
division by zerc.

3.2 02 WR

This subroutine calculates values of cne of three specific thermal
power functions feor use as the function W in MAX. Choice of the function
is determined by the current value of NQ. If the subroutine is called
with MQ = 0, the values of all three thermal power functions are cal-
culated. If NQ = 3, the subroutine calls subroutine WHT to calculate
the capsule weight. The three functions are:

AVe
"1 = TXID-R(8)-[R(8) + BETAT

AV2
«XIDR R + . +

W3 AVe

oI\g

v(1):P(I)

3.2.3 IF

This subroutine uses Newton's method to calculate a value of X(2)
to satisfy the constraint T = 1. The calculation proceeds until D - 1 =@,
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3.2.4 RZERO

This subroutine calculates RO from the following equatioun that relates
the outside radius of a cylindrical rapsule buried in an infinite conduct-
ing medium to the thermal power ond “emperature difference (difference
between the meximum capsule surface temperature and smbient temperature
of the conducting medium).

8 -1
. AV2-+sinh XLD
RO+ ), x (J) = TYK(‘TX—‘T%BEJ'E'}W- YT -
J=1

In this equation AV2 (see list for subroutine WR) is a function of
RO. The variable RO is initially estimated by an approximate formula and
then calculated by iteration using Newton's method uniil the relative
change in AV2 is less than 10'6 or 10 iterations have occurred. Conver-
gence is normally accomplished in less than five iterations because the
initial approximation is good and the derivatives are computed analytically.
If the current values of the variables X(2) and X(4) are such that RO is
negative, RO is set equal to 0.2,

3.2.5 LIMIT

This subroutine examines the last vet of variables computed by MAX
to determine if X(4) and R(3) ire within the preselected domains
X4L =X(4) = X4U and R3L = R(3) < R3U. If the current value of NMAX is 1
and X(4) is too large or too small, the variable X(4) is set at its
nearest limit and the entire MOPT sequence is repeated for NMAX = 2. If
the current value of NMAX is 1 and X4L = X(4) =< XWU, but R(3) is too
large or too small, the variable R(3) is set at its rearest limit and
tie calculational sequence is repeated for NMAX = L4, If the current value
of NMAX is 2 and R(3) is too large or toc small, R(3) is set at its nearest
limit and the independent variable X(2) is calculated to satisfy She
constraint D = 1,00. If the current value of NMAX is 3, 4, or 5 and X(k4)
is too large or too small, X(4) is set at its nearest limit and X(2) is,

again, calculated by the subroutine DF.
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3.2.6 WHT

This subroutine calculates the radii, length, and weight of the fuel
capsule using the current values of the variatles RO, X(2), and X(4). The
wejght, WT, is calculated as the sum of the product of volume and density

of each region.

3.2.7 VSU, CONVERT

These two subroutines convert the capsule dimension variables to
and from the variables used in MAX. Depending on the current value of
NMAY, VSU generates the variablet AIF(X) from RO, X(2), and/or X(4) and
the incremente DEL(X) = WEL(K) from DELRO, DEIX?, and/or DEIX4. CONVERT
reconverts to capsule dimensions and calls RZERO if NMAX = 5.

3.2.8 MAX

The MAX program, used as a subroutine in the CAPSUL program, was
written by F. H. S. Clark and F. B. K. Kam of ORNL. The reader is referred
to tneir repo:tlo or to the program list (Appendix C) for detailed in-
formation. The following will describe the sequence of calculations in
MAY and e few changes that were mede in the program for use in CAPSUL.

The main routine MAX vegins by computing numbers that are to be
used as convergence criteria and setting the outer iteration index M
equal t~ one. Subroutine SETUP is then callied. SETUP, which calls the
sutroutines DR and WR, produces values of the functions D and W and all
trheir first and second derivatives at rhe current trial set of independent
variables, AIF(K). When control returus from SETUP to MAX, a test is
made on the input mumber NIAM. If RIAM = O, the subroutine GTAIAM is
called to generate an initial estimate of ALEM, the lagrange multiplier.

A value of NIAM other than zero signals that the initial estimate of
AIAM has been provided as inmput. Subroutine VECT is called next to
generate comporents of the solution vector Y.

sabroutine CONVG is next called. This subroutine tests to determine
if YSQ is less than thz product of G (< 1) and its value in the previous
i*eration. If either (1) M is equal to one, (2) YSQ is less than the
computed product, or (3) the input integer IMOST is equal to zero (a




change), an index, JWAY, is set egual to one. If thece criteria are not
satisfied, JWAY is set equal to zero and the components of the step that
was last made in the domain of the function Y are multiplied by 0.5. The
index JWAY is set equal to -1 if the number of these (JWAY = O) inner
iterations has exceeded the input integer, L.IOST.

After CONVG, subroutine CUTPUT writes current values of the pertiaznt
indices, variables, and functions snd returns control to MAX. The MAX
program then tests the index, JWAY, to determine whether to stop the case
and proceed to the next one {JWAY = 1), to try an inner iteration .ith a
reduced step in the domain of the function (JWAY = 0), or to proceed with
convergence tests (JWAY = 1). If JWAY = O. the function YSQ is reevaluated
with the reduced increments until either the conditions for JWAY = 1 or
-1 are met.

If JWAY = 1, tests are made to determine if the trial solution is
converged or if the prescribed mumber (ITER) of outer iterations in M
have been made. If either of these questions is answered affirmatively,
the calculaticn is halted and input for the next cace is called. Otherwise,
subroutine ARITH is called. In this subroutine elements of a matrix (A)
are evaluated at the new trial point. Next; subroutine MATQ is called.
This solves for X the matrix equation (A)X = Y. The index M is increased
by one and subroutine STEP is called, with subsequent operations following
as previously described.

3.2.9 Input Information

The sequence for MOPT = 2 or 3 requires, in order, one each of the
data cards "a" and "d" turough "i" (Table 1). For MOPT :- 2, these initial
cards are followed Ly cards of type "b" and "c", stacked in the same order
as for MCPT = 1; again, the last card o. type "c¢" is followed by a card
"p” with K = 0. The next card, of type "j", is included only if MOPT = 3.
Ore each of the remaining data cards of type "k" through "g" then follows
for either MOPT = 2 cr 3. The last case is followed by a <ard of type
"&" with MOPT = O. The input constants T81, TAl, and IIN sre not used
for MOPT = 2 or 3; consequently, thesce fields may be left tlank.
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3.3 Capsule Lifetime Analysis (MOPT = 4)

This sequence begins by reading and wr'ting §7 input constants, the
first of which is MOPT (NMAX and NQ must be zero). The program then calls
the subroutine THETAC. This subroutine usee the subroutine DR and Newion's
method with an initial estimate of life, THET, to calculate a value of
the resultant life, THETA, that satisfies the constraint D = 1.00. In
this case, D is the sum of two integrals. The first integral, over the
time domain from z2ro to the input number TAU, uses the value T8 as the
initial steady state temperature of the outer surface of the capsule and
TA as the temperature of the environment. The second integral, over the
time period TAU to THET, uses T8l as the initial (time zero) steady stat~
temperature of the surface of the capsule and TAl as the temperature of
the environment. A value of TAU = O sets the first integral equal to zero.

If, on any iteration, THET is larger than an input constsnt, THMAX,
and D is less than one, THET is set equal to THMAX and a new variable,
OMEGA, is computed by Newton's method to satisfy the constraint D = 1.
OMEGA is a number that multiplies the safety factors SC and SU.

After each iterstion, the program writes the current values of either
THETA, D, and the contribution of tne second integral to D; or THMAX, D,
and OMEGA. The calculation stops and returns control to the main program
when D - 1 is less than the input number, Q.

Execution time of the progran with N = NN = 100 is generally less
than 20 seconds.

The sequence for MOPT = 4 requires, in order, one eack of the data
cards "a", "d" through "j", "1", and "r" through "t" (Table 1). The
last case is followed by a card of type "a" with MOPT = O.

4.0 KESULTS OF ANALYSIS OF CREEP DATA

Creep data for several alloys here been analyzed to confirm the
applicability of the model used in the CAPSUL program. Th2 following
sections will present a statistical analysis of the preaicted creep life
functions for threz commercial materiels, an analysis of the errors in
time extrapolations, and results obtained in predicting constant stress

rater data from conventicnal, constant stress, creep data.
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4.1 Predicted Creep Life Functions

Creep life functions for three commercial alloys (304 stainless
steel, Hastelloy N, and Cb-1% Zr) were generated using the MOPT = 1 option
of the CAPSUL program. The fitted creep life function for rupture of
304 stainless steel (Fig. 3) was made using 189 reduced creep data pointsll
for 18 heats of bar and plate, covering the temperature domain from 900 to
1700°F and rupture life to 100,000 hr. The reported lata, st decade
intervals, were generated by interpolation or extrapolation of the larger
body of experimental creep data.ior a given heat of material and tempera-
ture. Only three of the .;00/000-hr data poin%s were obtained from experi-
ments terminated at approximately 100,000 hr. The other thirteen data
points were obtained by extrapolation of data from experiments terminated
at earlier times in the 10,000 to 100,000-hr decade. The constants y and
oh were chosen prior to the least squares snalysis to force a fit of the
ultimate strength vs temperature (0.l-hr rupture) data in the temperature
domain above 400°F. A parametric plot of the derived creep rupture
function (Fig. 4t) shows that the fit is good over the entire range of the
variables. The frequency disvribution of the error (Fig. 5) in the
logerithn of the measured life and stress with respect to values predicted
by the fitted function is approximately gaussiun. The distribution of the
error in relative stress is also approximately normal; the reistive standard
error in stress is 0.17 (68% confidence level).

The fitted creep life function (Fig. 6) for rupture of Hastelloy N
(INOR-8) was made using 93 data points 12,13 £or ) ive heats of rods, sheet,
and plate, covering the domains in temperature from 1100 to 1800°F and
rupture life to 14,400 hr. A parametric plot of the predicted function
and data at four temperatures is shown in Fig. 7. In this case, the
distribution of error (Fig. 8) is not geaussian, but the frequency peaks
on both sides of the fitted function. This phenomenon is explained by
the fact that approximately half of the data were obtained with the
commercial Hastelloy N alloy which is somewhat stronger than the initial
versicn of the alloy, which was called INOR-8. If it is assumed that the
frequency distribution is gaussian, the relative standard error in
stress is 0.16.
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The creep life function for rupture of Cb-1% Zr (Fig. 9) was
generated using datal,""l5 from 25 heats of sheet, bar, and plate, covering
the temperature domain from 1600 to 2200°F end rupture life to 1733 hours.
The abnormally large amount of scatter in the data, shown in the parametric
plot (Fig. 10), is cesused, primarily, by changes that were made in the
composition and heat treatment of the alloy that resulted, accidentally
or deliverately, between the periods of testing. The frequency distribution
of the error (Fig. 11) is approximately gaussian. The rvelative standard
error in stress is 0.1k,

The analysis of these creep data indicates that the general creep
1ife function chosen for the model can provide a good description of
constant stress, constant temperature creep behavior in 304 stainless
steel, Hastelloy N, and Cb-1% Zr. Based on the results of others'’> who
have correlated creep data with the Iarson-Millar parameter (but, generally
not extending the fit into the ultimate strength range), we assume that
the seme conclusion will apply to meny other i1-tals and alloys (probably
including most alloys of copper, nickel, iron, slumimum, and the re-
fractory metals). It is spparent from the analysis that the ultimate
strength data are useful for complementing the creep data in the high-
stress, low-temperature region.

The parametric plots of the fitted functions and data show that
the distribution of data with respect to the fitted functions tends to
be random in that the relative error does not vary significantly over the
domain of the variables. In general, we have found that the fregquency
distribution function is most nearly gauss’an when either one heat or
many heats of an alloy are analyzed. There may be significant deviation
from gaussian behavior if only a few heats of material, of varying
properties, are analyzed.

4.2 Analysis of Errors in Time Extrapolations

The accuracy of the model for extrapolation of creep life in the
three commercial alloys was inverxtigated by making fits of constant
stress and temperature creep data with rupture life less than & selected
time; using these fitted functions to predict the stress as a function of
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temperature to cause rupture at a greater time; and compering the pre-
dicted stress with the actual average stress which caused fajilure a* the
greater time. The accuracy of the extrapolation. expressed in terms of

the maximm relative error (or bias) in the predicted ‘stress as a function
of temperature, is then compared to the standard error (error at 67 percent
confidence level since the distribution of stress data is approximately
gaussian) in relative stress caused by the normal scatter of data about
the predicted best-fit function. The model is then known to provide for
adequate extrapolation of creep within the time range such that the bias
in the predicted stress is smrll as compared to the standard error.

The first column of Table 2 shows the material, number of heats, and
temperature range of the creep data that were analyzed. The next two
columns show the values of the selected times and the corresponding number
of data points (with rupture life less than the selected time) for whickh
best-fit functions were evaluated. The fourth column shows the values of
rupture life for which stress as a function of temperature was predicted
by the model. The fifth colum shows the standard error in relati:e
stress for each of best-fit functions. The last colurm shows the maximm
bias in the predicted stress, defined as the ratio ¢f the maximm dif-
ference between the predicted and mean-measured stress to the mean-measured
stress within the temperature range of the experiments.

Two very striking, but temuous, conclusions mey be drawn based on
the results of Table 2. ’

1. It sppears that,fo.  a large rnumber of metals, the present
creep model can provide a fit of creep data such that the
standard error in relative stress will not exceed 15 to 17
percent. Kaowledge of the statistics of the fit and the
frequency distributioa function will permit the choice of
a design stress for a predetermined confidence level.

2. In each of the commercial alloys analyzed, the bias in
predicted stress for & long-time extrapolation becomes
small, using only 100 Tto 200-hr creep data. For these
alloys, the creev “ata for times greater than 100 to 200
hours is superflvous. The data seem to suggest that if




Table 2. Statistics and Predictability of Creep Rupture Data for Several Alloys
Maximum Iife to Relative Maximum Absolute
Material Lifetime be Standard Relativc¢ Bias
No. of Heats in Data Predicted Error in in Predicted
Temp. Domain, °F (nr) (nr) Stress
5 10 100,000 0.03 -1.0
304 Stainless Steel 100 100,000 0.13 =-0.10
18 heats 1,000 100,000 0.14 -0.09
900 =T = 1700 10,000 100,000 0.16 -0.05
100,000 100,000 0.17 0.0
100 10,000 Oolg 0.2
200 19,000 0.1 0.08
H’;*ﬁgﬁg o 500 10,000 0.17 -0.04
1,000 10,000 0. -0.02
<< << ) b
1100 =T = 1800 2,00 10,000 0.16 0.008
15,000 10,000 0.16 0.0
80 1,500 0.09 0.25
25 heats 300 1,500 0.12 -0.04
1600 =< T = 2200 750 1,500 - 0.13 0.05
1,800 1,500 0.14 0.0

aNote: use of previously reduced data describel on p. 23.
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creep data are available that span two to three decades in
time (1 to 200 hours, for example), then a fitted function
can be determined that will permit extremely long extra-
polations in time with the error of the extrapolation being
less than the norma) scatter in moderate-time creep rupture
dsta. This conclusion assumes, of course, that the long-
term environment is the same as the test environment.

The data also suggest a post.ble method for avoiding experiments
of unnecessarily long term in creep determinations. The creep program
would pegin by generating first short time; then, progressively, longer
“ime data. The composite data would then be fitted, sequentially, as
each new, longer~time data pciny ’s generated; and the fitted function
would te used to predict the cocditions to cause failure (or a given
strain) &t a very long time (perhaps 100,000 hours). The creep program
would be terminated when sufficient data are generated such that sequen-
tial data cause small and random (as opposed to monotonic) changes in
the predicted conditions to cause long-term failure.

'..3 Anaiysis of Ccnstant Stress Rate Tescs

The accuracy of the model in predicting creep, under conditions of
varying stress, wes investigated by analyzing constant stress rate tests
with the CAPSUL program. The time to rupture of the alloy T-222 and
time to 1 percent strain of the allioy FS-85 expnsed to a constantly
increasing stress rate and constent temperature were calculated (Fig. 12)
using a creep life function that w=s generated using conventional creep
and ultimate strength,data9’ 16 over a wide range of stress and temperature.
The predicted stress rates agree with the measured data for the alloy
T-222 within experimental error. Agreement with the FS-85 data is satis-
factory, but it appears that .the predicted results are biased at the
particular temperature at whicn the experiments were conducted.

McCoy8 has analyzed these same creep data using a simpler, but less
general, model. McCoy fitted éonventional creep data, at the specific
temperature of interest, by sisuming that the logarithm of stress is
linearly related to tne logarithm of the creep life, an assumption that
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O T1-222 RUPTURE AT 2000°F
A 1-222 RUPTURE AT 2200°F O™
O FsS-85 1% STRAIN AT 2200°F
=== PREDICTED BY McCOY
—— PREDICTED BY PRESENT METHOD
] &
10 100 1000 10,000

STRESS RATE (psi/hr)

Fig. 12,
FS-85 at a Constant Stress Rate and Constant Temperature.

Predicted and Observed Creep Behavior of T-222 and
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is equivalent tc the svsumption used in the present method if the temer.
ature is high, McC.y’'. predictions are also good, but no better than
those predicted by the present method in s;ite of the fact that his model
was based on data only for the specific temperature of interest, McCoy
required two equatiorns to provide a good fit of the FS-85 data over the
stress rate domain of the experiments.

The procedure for determining the l-percent-creep function for the
FS-85 is shown as * . example of the MOPT = 1 sequence of the CAPSUL
program in Appendix B. Also shown is one of the constant stress rate
calculations for rupiw.e of the T-222 alloy as an example of the MOPT = 4
sequence.
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A, A0, A2
AIAM, AIF(IX + 1)
AIF(K), K = 1,19

AIPHA, Q

AvV2

BETA

CRIT

D, DH

DEL(K), K = 1,19

DEIOME

DELTA

DELRO
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APPENDIX A

Units and Glossary of Symbols

Units
Length inch
Mass - pound
Time = hour
Temperature - d=2grees Rankine
Heat . Btu

Symbc s

Thermal power per unit of fuel region.
The Iagrange multiplier.
Independent variables in MAX.

The fitted value of creep stress for a
Iarson-Miller parameter of zero.

Thermai power of the fuel region.

One-half the surface-to-surface distance
between parallel columns of capsules,

Constrained value of DH.

An input value of a convergence criterion
for MAX.

Value of the constraining function, Eq. (2).

The increment in the variables AIF(K) in
calculating IH.

The increment in OMEGA.

Th? nkness of the
the capsule.

structural liner surrounding

The increment in RO.




DELTH
DEIX2

DELXL

DIsG(I), I = 1,500
DLTH(I), I = 1,500
E

ETA

JAM

=

LAMDA, A
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The increment of THET.

The increment in X(2).

The increment in X(4).

The common logarithm of SIGMA{I)/SIGB(I).
The common logarithm of THETA(I)/THE1B(I).
Capsule weld efficiency.

Volume fraction of gas space in the fuel
region.

Integrand of the constraining fun“tion.

A number slightly less than 1.0 in the
convergence criterion for MAX.

A constant in F, usually 1.0 or 2.0.

Weight fraction of alpha-emitt.ag isotons
in the fuel.

An index.

Meximm number of outer iterations in MAX.
Number of independent variables in MAiX.
An index.

An integer that counts and limits to 100
the number of iterations to adjust input
estimetes of X(2) and X(4) such that
0.3=DH =14.0.

Maximum number of data points in LSTSQ.
Elsewhere an index.

An inder in THETAC. Overall lengtli of the
fuel capsule in the main program.

Length of fueled section of capsule,

Iength of the straight section of the
capsule.

Decay constant of the radioisotope.

- ——r




R

IMOST
IMP(I), I = 1,500
LSTOP

MOPT

N, NN

L)

NR

OMEGA, XK(1)

P(I), I =1,9

PHI

L3

Maximum number of inn~zr iterations in MAX.
Value of the Larson-).iiler parameter.

An index which counts inner iterations in
MAX .,

An index which counts outer iterations in
MAX. An index in RZERO.

An input index which decides the sequence
to use in the main program

The initial number of (even) increments for
Simpson's rule integration in DR, If

MOPT = 2 or 3, N is the initial number of
increments in the time domain 0.0 to THET.
If MOPT = 4, N is the initial number of
increments in the domain 0.0 to TAU and NN
is the initial number of increments in the
domain TAU +o THET.

An input index to determine if a convergence
criterion is to be used in MAX,

An input index to determine if GTAIAM is to
be used to estimate the initial value of
the Iagrange miltiplier.

An input index that specifies the set of
independent capsule dimension variables
that are subject to optimization.

An inder that causes additional creep data
cards to be read and analyzed by ISTSQ
*ogether with data previously in storage.

An input index that decides the functior. to
be maximized.

The index of the Iagrange multiplier, I/ + 1.
A number that multiplies the safety factors
SC and SU in THETAC to satisfy DE = 1.0 if
THET > THMAX.

Density of the material in region I of the
capsule,

An input convergence criterion for the
Simpson's Rule integration in DR.




O

R(I), I =1,8

RESIG

3
{

R3L
R3U -
SC, S,

SELTH

SELSG

SIGB(I), I = 1,500, o

 SIGMA(I), I = 1,5C0
SIGT

S1IGU, o,

Ly

Initial pressure ir the fuel capsule.

An input coavergence critertiocn on Di for
use in the subrovtines DF arnl THETAC.

Outer radiuc ot reglion I of the capsule.

The standard error in relatjve stress for
the fitted creep life function.

YSQ-G, a test jusntity in MAX.

The outer radius of the void region of the
cerpsule. :

The imposed lower limit for the outer radjus
of region 3 of the caspsule.

The imposed uvper limit for thc onter radjus
of region 3 of the capsule. :

The safety factor on creep stress.

The standerd error in the common logarithm
of creep life for the fitted creep life
function. E ; =

The stundard error in the common logarithm
of stress for the fitted creep life function.

The value of stress predicted by the fitted
creep life function for the velues T(I)
and THETA(I).

The measured value of stress in the input
<reep data.

The current value of stress es a function
of time in DR.

An imrosed vpper limit on stress as a function
of the ILarson-Miller parameter.

The safely factor on SIGU.

Time since applicai’.n of the stress.

The measured value of absolute temperature
in the creep cats.

Amdbient temmerature of the earth (MOPT = 2 or 3)
and the first environnent (MOPT = 4).

&
L




TAl

TAU

THST, THETA, ©

THETA(I), I

THETB(I), I

T4

T40

T8

T81

1,500

1,500, 6
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Ambient temperature of tho secord environment
(MOPT = 4), see T81.

Lifetize in the initial serv.:e ¢nvironment
for use in THETAC.

The upper limit of the integral in DR either
TAU or THET.

Resultant life of the fiel capsule expesed
to varying stress and Lemperature.

The measured value of “ife to 8 prescribed
creep criteriorn in the irput creep data,

The velue of life pregicted by the fitted
creep life function for the values SIGMA(I)
and T(I)

An imposed upper limit on the value of THE™
in THETAC.

The lower limit of the integral in DR, either
zero or TAU.

Temperature of the gas wher the capsuie is
sealed.

The initial steady state temperature of the
helium gas in the fuel capsule as calculated
in DR.

The instantanecus value of the steady state
temperature of the inner wall of the primary
structural meteriaj.

The initial steady state temperature of the
inner wall of the Primery structural material.

The imposed injtisl stzady state of the outer
surface of ihe capsule. ™ THETAC this is
th: initiwg temperature in the time period
zero tc TAU.

In sulrcutine THETAC the impossd initial
steady state temperature of the surface of
the fuel capsale 3 tre time period TAU to
THETA exyressed ar {he temperature at zero
time (i.e., at full therma) power),




T82

V(I): I-= 1:97

VO

W, WH

WEL(K), K = 1,19

w3

X(I): I-= 1,9

X(K,l), XX(K:I), K=1,19

XID

XM, m
VKO, YK, H

XK(1), I =2,8

XK(9)
XK(10)

XLhL
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The initial steady state temperature of the
suriace of the capsule assuming that it be-
comes buried in an infinite medium of con-
ductivity XK(10) at zeiro time.

Volume of region I of the capsule.
Volume of the void region.
Volume of the fuel reg'on.

The specific thermal power function that is
to be maximized (W1, W2, or W3).

The increment in the variables AIF(K) in
calculating WH.

Weight of the fuel capsule.

Theraal power of the capsule per unit of
projected area. '

Thenial power cof the capsule per unit of
volume of a circumscritcd rectangular
varallepiped.

Thermal power of the capsule per unit of
weight.

Thickness of region I of the capsule.
An increment in the variable AIF(K).

The overall length-to-dia.xeter ratio of +»~
capsule.

A fitted constant in the creep life function.
A fitted constant in the creep life function.

Thermal conductivity of region I of the
capsule. '

Thickness of the capsule bushing (see Fig. 2).

Temperature averaged thermal conductivity of
the infinite medium in which the capsule
is immersed.

The imposed lower limit on tke thickness of
the primary structural material of the
capsule.




X4y

YS?

ZM

o

O =i "WV & Ww N

=
o

W7

The imposed upper 1imit on the thickness of
the primary structural material of the
capsule.

See XXD.

The square of the vector ¥, which is the
function minimiz~4 in MAX.

Atomic weight of the alpha-emitting radio-
isotope.

Capsule Rcgions (Fig. 2)

Helium
Inner fuel liner
Radioisotope fuel

Outer fuel liner
Primary containment wall
Diffusion barrier

Ges gap

Corrosion barrier
Radiant coating

Fuel spacer

An infirite heat conducting medium




48

APPENDIX B

Example Problems

Bl. MOPT =1

This sequence is used to generate constants in the creep life
function for 1 percent strain in the alloy FS-85. A photograph of
the output is shown in Table Bl. The creep data are the 28 data points
(K = 28) reported by Stephemson.:'l'6 The ultimate strength at room
temperature (SIGU) is taken to be 80,000 psi. A mdoderately large value
of 2.0 is chosen for the constant GAMMA to prdvide a rather abrupt
change in the behavior of the function in the transition range. Shown
on the second and third rows of the output are the computed constants
(ALPHA, XM, XKC) and the standard errors in life and stress (SEI1H, SEISG,
and RESIG) relative to the fitted function. The array of basic experi-
mental data [SIGMA(I), T(I), THETA(I)] is shown in columns two through
four of the output. Other columns 1list pertinent calculated results

(IMP(I), THETB(I), SIGB(I). DITH(I), and DISG(I)] for each data point.




Table Bl

K = 28 SIGU = 80000 GAMMA = 2,00 . arbie. . N
ALPHA = 0.336050E 08 XM = 0.916876E-04 XKO = 0.133654E 14
SELTH = 0.418337€ 09 SELSG = 0.974960F-01 RESIG = 0.202662E 00
I SIGMACLIY) T(1) THEYA(!) LMP(I) THETB(I) SIGB(]) DLTH(I) OLSG( 1)
1 35000, 226C. 4.10 0031050E 05 O.11064E 02 O0.41041F 05 =0.43112€ 00 <-0.69151€-01
2 30000. 2260 26,00 0,32784E 05 026966E 02  0430627E 05 =-0.50602E-01 =-0,89825€E-02
3 25000, 2260, 128.00 0.34427€E 05 0.73123€E 02 0.22490F 05 O0.c4316E 00 0.45943E-01
4 22500, 2260, 20500 0434889 05 0,1277T1E 03 0.,20544E 05 0.20554€ 00 0.39505E-01
5 O Oo 226 ° & 000 00 : O 00 6 ' ® ‘ ° ® =
6 25000, 2460. De7% 0.31968E N5 0.44193E 01 0.35334E 05 =-0.77612E 00 --0.15025E 00
7 20000. 2460, 6.30 0.34256E 05 0.12936E 02 0.23247TE 09 <=0.31247E 00 -0.65341€E-01
8 17500, 2460, 32.00 0.35993E 05 0.24202E 02 0616478 05 0.12131E 00 0.26122€E-01
9 15000. 2460. T110.00 0.37312E 05 0.49364E 02 O0.1258TE 05 0.347T99E 00 0.76154E-01
10 14000. 2460, 130,00 0.37490€ 05 0.67TT27TE 02 0.12133E 05 0.28318FE 00 0.52165E-01
11 15560. 2460, 30,00 0,37490F ¢ 9% 0. 136 e 2994
12 1oooo. 2460, 600,00 0.39124E 05 06313147E 03 0.,B6428E 0464 0,28473F 00 0.63345€-01
13 17500. 2660, 0.75 0. 34583€ 05 «19628E€ 01 0.21818€ 05 =-0.41782€ 00 =-0.95772€-01
14 16000, 2660. 2.50 0.35974E 05 0.28826E 01 0.16542E 05 <-=0.61841E-01 =0.14460E-01
15 15000. 2660. 4.00 O0.36517E 05 0.37946E 01 O0.,14815E 05 O0.22890E-01 0.53835€-0°
16 12500. 2660, 15.00 0.3804%E 0% 0.81978E 01 0.,10821F 05 0.,26239€ 00 0.62632€E~-01
17 10000. 2660, 55.00 0e39544F 0 4 e 1916 ok p 4
18 9000. 2660, 8000 0.39977E 05 0,32309€E 02 0.72310€E 04 0.39376E 00 0.95044E-01
19 7000. 2660. 121.00 0.40455€ 05 «91485E «65418F 04 44E 00 «29402E-01
20 7000, 2660, 200,00 0.41036E 05 0.91485€E 02 0.57914E 04 0.33968E 00 0.82313E-01
21 5000, 2660. 152,00 O0.40719E O . 366 p 4 =0. 0 -0.92 =
22 5000, 266%;_ 205.00 0.41064E 05 0.36632€ 03 0.57568F 04 -0.25210€ 0N -0.612!35-%%_
™ 66 . l ® ° 4 o ) e -V =Ve
24 10000. 3060, 0¢30 0.38565F 05 0.26964E 00 0,97097€ 04 0.46338E-01 0.12795€-01
25 8000. 3060. 1.10 Y ° 0.67T694E 04 0.26079E 00 O0.12537e-01
26 6000. 3060, 3,60 0.41868E 05 0.16956E 01 0.48623E 04 0.32697€ 00 0.91306€-01
271 5600. 3060 20.00 C.4414 11656 )e 300B6F u ° . -
28 1000. 3060. 280,00 0.47654E 05 O0.,10165€ 04 0,14357€ 04 =0.55995E 00 -0.15707E 00

64
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B2. MOPT = 3

This problem requires determination of the dimensions of a cepsule
for 2“‘(:!\203 fuel havring maximum power per unit of volume. Restrictions
>n the capsule are: (1) The primary container material, fuel liners, and
the bushing are to be made of Hastelloy N. (2) The fuel liners and
bushing are td be 0.010 in. thick. (3) The outer surface temperature of
the capsule 1s not to exceed 2100°R if the capsule becomee buried ir dry
sand [XK(10) = 0.0167] immediately after incapsulation. (%) The capsv’z
{s to be designed such that the\proba‘?* 1ity of mpture in 5 years is
Q.001. This condition (see Sect: 4, is anprmcimte]:y satisfied By design-
ing for rupture in 5 years with a stress . safety tactor of 2,0 (%)

0.05 =x(4) = 0.5, 0.01 <R(3) =3.0. o T

The input date for this ;..cmem are tatulate& in the first 19 Tous

of the printed output wabn\aa > Initial estimtes of- ‘the variables R),

X(2), and X(4) are 0.3, C. r,,ana- a.16 respectively. In th:ls prohlem it

is chosen to use only- -og e i% el-ations in the MAX cawalations{nmﬁ-d};. s

The variables and thei:r:) n.cmr.ts for 222 in tms ':alculation are go
small that mner,iterat on... mum sauetimes fail ‘oecause nrfI\ =S _,g?‘ o =
~ sigaificance (me Eﬂ/@ﬁs oang.ec only scven sim;fi eaut“ﬁ.gures\ 111 =
this program}.” o s il el

The minimm va.ue. of ‘!SQ (”7 36} for whick the- conétmint. (D 1,0000)
is satisfied aud f' tsmlmm (50 25 Btu/h'4n3) oc"ura—in *.{tﬂmtion
number 48 {n l&&). ‘I'he if.erat‘j cas ”«s fc 0' pra'luc" i:he d:.me -computed
values indi cating that YSQ ;Ls trapm:l at e.tf. T e statibmry peint or an
absolute minimum t.hat%nay be ottaine‘ m.tL ,*‘.L‘e cun‘ent spt of variaoples
and their increments, _{."umlat,;lons ~with h_ig,hexj and lowe_zf starting
estimates of X(4) indicated tnat this salution prdviéeé meximim power
within t! : renge of interest in the variables R(3) and ¥(%). The last
array of computed values in the output is the ssme &s in the last
jteration produced by MAX, ialicating that LIMIT did not call DF because
R(3) and X(4) were within the preselected limits. |

o - -

-
o, I,

e -
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70 = 210C.0 A= 1454.0

s T = [.00

BR = 18520.6 € = 1.000
w1 ~
LANGOA =  0.43680€-05 W = 100
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Table B2
ETA = C.4 SETA = 0.0
03 = w 2o
PS = (0.0 TS =.560.0
° TAL & U0
NN = 100

nrPY = 3 REAX = § NQ =

2

THE FOLLOWING THREE ROuS ARE THE CONTENTS OF FTHE Xo Py AND XK ARRAYS

0.0100 C.0 0.0100 0o 0.0 0.0 0.0 0.0 0.0
© 03860 0.3250 VeI250 0.0 LN V0 0.0 U0
0.1900 20000 2.0000 le 1.0000 1.0000 1.0000 0.0100 0.0167

ALPHA = 0.72610E 03
-

L ]
R = c+93C1CE 16

XU = G.500 k4L = 0.050 RN = 3.000 R3L = 0.010

SIGU = 110000. SC = 2.00 SU = 2,00 PHI = 0.10E-04
- e = ° = e [
TAU = 0.0 781 = 2100. 782 = 2100. X0 = 5,0 - )}
KU = U.3C0 X:2F = U. I & Ue = °
I 2  WGAR= 0  RITeR= 0  TTER= SC  TROSY = 0
6 = 0.990 C = 1.000 CRIT = 1.70000 ALAN = 0.0
A= 1 0= 0.390253€ Cl W=  Q0.753760E 02 YS4¢= 0.157817E 06 2= 0.15TBL1TE 06 LSTOP= 0

0395368 03 0.358484E-01

0.365267€ 02 0.160000E 00

=C«29C253E (1 0.0

RADI! ARE 0.26557 0.27557 0.31142 0.32142 0.48142 0.48142 0.48142 0.48742 0.48142
=

- = U. = U.T25T3E U2 WZ = U.IS3TSE U2 W3 = U.822e¢ .

e Z U= U.IISIIZE UI W= USSE3T7IE UZ VYSU= U.SUGSYSE IU I+ U.WSSYSE U  LSIOFs U
T T U8IATETE U5  U.IZVERRE-TI
T =U.592328E UA U IS¥ITSE UU
TT=U.TTIZZE TO — C-IBI4SUE '3

- - ° I 035100  U0.5.512 U.51512 U.51%F2 U.51I%1Z U.51512

L = 0.51502E 00 AV2 = 0.35996E 03 Wl = 0.67828: 02 W2 = 0.65837E 02 W3 = 0.4039i€ 03 WT = 0.89119€ 00

A= 3 O= 0.114299€ 01 M= 0.606518E 02 VSQ= 0.454751€ i3 I= O0.46ATSIE 13 LSTOP= 0

-0.216592E 07 0.297294€-01

0.206227€ Cé C.163247E 00

=0.142992E 00 -0.919341E C4

RADII ARE 0032371 0.33371 0036344 0.37344 0.53669  0.53669 0.53669 0.53669 0.53669
-

1. o = .

= Ue WZ = U.80852¢F s U, .

ks % Us U-T00STSE UT W U.592224F U7 VS0 C.ZRIZE IT I+ U.IZTRIZEXT C(SVW¥s O
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Table B2 (continued)

L = 0.54344E O1  AV2 » 0.3797%€ 03 Wl = 0.64293E 02 WZ = 0.59154E 02 W) = 0.38135C 03 W7 = 0.99381E 00
Mo 44 Q= C.1C0000C O}  Ws 0.591540E 02  YSQs 0.112344E 064 2s 0.112344€ 06  LSTOPs 0
C.130723L €2  0.291225E-C)

___=.3031226 €2 C.l63619€ OC

Ce476837E-06 0.)11302€ Cc2

RADLI ARE  0.3307C  0.3407C_ 0.36982  0.37582  0.54344 0.56344 0.56344 0.%4364 0.54364
TU = 0.54354E OT  AV2 = 0.37975F 03 Wl = 0.64Z93E 02 W2 = 0.59154E 02 W3 = 0.38135€ 03 W7 = 0.99581E 00

L3 45 D= O.T0COCOE CI- W= O.59I540F 02 VSG= 0. 104I62E 04 7= 0.1041626 04 LSTOP= 0

T =U.3I%7%%¢t t2 U.291225E-01
T U.ATCAIOE TI  O0.I&83¢IBE OC =1 = ¢ i
T =Ce.9536T14E-(6 . O.ILCI35E 02 gy | e

. Ue JRUTC U.38382 U.37982 U.5%3%% U.5434% U.5434% U.5333% U.5%34%
L = 0.54344k 01  AV2 = 0.37975E 03 Wl = 0.64293E 02 M2 = 0.59134E (¢ W3 = 0,38135€ 03 WT = 0.95561E 00

M= 46 U= 0.100000E O W= 0.59154CE 02 ¥SQ= 0.302119E 04 2= 0.302119€ 04 LSTOP= . 0 _

N.54955¢" €2 0.291225€-01

0.1C376C: 01 0.163¢18E GC

09536 74E-C6 0.112239E 02
RADEI ARE  C.2307C ~0.3407C 0.36982 0.37982 0.54334  0.54364 0.56344  0.54344 0.54344
=

L] = Ue . - ® Us = Ue
W= %47 C= U.I00000E UI &= O.591I54CE 72 VSU= . ST&TZTE 02 I= O0.57472T7E 0L LSTOP= [}
L =Ue . -1 R B
= U-I55ZCCE OT  U.IG3ISIWE CC
T =0.9538T1AL=C6  0.I109587F U2 S
" ®KADTT BRE u’.::o‘m““o:!m_‘u.m 0.ITIBZ 0.5834F  D.58344  0.54344  0.54384  0.54364

L= 0.54344E 01 AV2 = 0.,37975E 03 Nl = 0.64293E 02 Wl = 0.59154E 02 N3 = 0.38135E 03 WV = 0.99581E 00

Me 48 0= 0.10000GE Ol &= 0.59154CE 02 VSQ= 0.573656E 02 2= 0.573656E 02 LSTOP= 0

-0.6285C6E 00  0.291225E-01

0.754785€E C1 0.163¢.8E 00

_ =0.953674E-C6  0.1CSS69E 02 -
RACIE ARE  0.3307C C.34G70  C.36982  0.37982  C.54344  0.56344 0.54344 0.54344 0.54344

"L = 0.50344F O AVZ = U.37975F U3 WI = U.54293E 02 WZ = U.59I54FE 02 W3 = 0.3B1ISE 03 WT = 0.99581E 00
K= 43 C= . = Ue . ? - . - 0
T =0.0286C6E CO 0.9 1225:-0T - Eeas o

" 'G.TE4IE5E CI  0.I836I8E OC
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Table B2 (continued)

=C.$53674E~-C6 0.109569E 02
RACI! ARE 0«3307C C.34070 0.36982 037982 0.543446  0.54344  0.54344 0.56344  0.560344
] =

° ] ® % Qe £ s . s 0, .
TR TTSC T Ca 621000006 OT  We U.SIISACE OZ V505 0.5TISBEE UL I O0-5T3GS6E 02 LSTOPs O
TTU.8205CHE 00 T 0:29125E=01 S T

"+ 953874E-C6 0.109569€ 02

"RADIY ARE_0.3307C ¢ %% ~36 . 54304 0.5438% 0.54384  0.5438% 054386
L = 0.54344E Cl  AV2 - . T7975E 03 Wl = 0.64293E 02 W2 = 0459154 02 W3 = 0.38135E 03 WV = 0.,9958lE 00

M= 51 D= 0.100000E Ol W= 0.591540E 02 YSG= 0.573656E 02 2= 0.573656E 02 LSTOP= 0

. =0.£6288C6E Q0 0.291225€-01 = = e

C. 754785€ C1 G.163¢18E OC

_ =Ce953£74E-Co 0.10956SE C2 =) — S e

RADILI ARE 033070 0.34070 0.36982 0.37982 V53344 0.56344 0.54344 0.543446 0.54346
L= 0,543, 01  AVZ = 0.7/975E C3 W1 = 0.64233E.02 72 = 0.59154€ 02 w3 = 0.38I33E 03 WY = 0.99581€ 20

—XADTIT ARE— )2 - - . - 2 - - TSEI%%
L = 0.5634¢ Ol  AV2 = 0.37975€ C3 Wl = 0.64293E 02 W2 = 0.59154E 02 W3 = 0.38135€ 03 WT = 0.99581E 00
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'B3. MOPT =4

We will illustrate the use of this sequence tc calculate the rupture

life of an 8slloy exposed to a constant stress rete, a problem different
from the normal one of calculating the life of a capsule. The alloy T-222
1s subjected to a constantly increasing stress rate, ¢, of 3500 psi/hr

8t a temperature of 2460°R. The input constants (some are redefined),
printed on the first 14 rows of the output (Tabie B3) are determined as
follows:

1.

Iet TA = A = BETA = DEITA = PS = TA = NMAX M = TAU = RS =0, .
It ETA =C =G =7 = x(I), =1,9but# 4 =p(1), I1=1,9-= XK(I), ’

The constants GAMMA, SIGU, ALPHA, YK, and XM are chosen from a fit
of T-222 rupture data.

Iet TA1 = T01 = ZM = 2%0. ZM cancels TAl in the expression for
SIGT.

Choose THET such that ¢-THET < SIGU; therefore, THET = 25,
Choose IAMBDA such that LAMGOATHET < 0.01; therefore LAMEDA = 10-%,
This causes the expression [1 - EXP(-LAMBDA*T)] to produce IAMBDA-T.

Choose H = 10)'" to cancel IAM™A.

Iet RO = O and XK(9) = 3; therefcre R(3) = XK(9) and VO =

Iet X(4) =2 and E = 2.125. This causes T to cancel the term
[R(4)? + R(3PI/IR(E)® - R(3)R).

Iet RR = 5 = 3500.

Let PHI = 10™*, Q = 103, DEITH = DELOME < 1072, and THMAX =

The computed value of THETA, determined in five iteraticas y 1s

19.33 hours; this compares with an experimentally determined value of
19.1 hours. The valve of OMEGA is one since TIMAX was.not exceeded.




Table B3

78 = U.C A= 0.0 EYA = 1.0 BETA = 0.0
DELVTA = (.0 C = 1.00 G = 1.C0 GANKA = 2,00
RR = 3500.0 E = 2.125 PS = 0.0 TS = 1.0

= . = 2%60.0 TA = 0.0 “TAT = Z%80.0
£5HBDA = C.10000&-C3 N =120 NN = 100
VOPT = & NMAX = C NQ = O

THE FOLLCWING THREE RCWS ARE THE CCNTENTS OF THE Xy Py AND XK ARRAYS

)

1.0CCC )..0000 1.0000 2.0000 1.0070 1.0000 1.0000 1.0000 1.0000
1.0000 1.€0CC ~ 1.0000 I.00C0 1.07,00 T YTL0000 T I.CD00 1.0009 1.0009
1.00C0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0600 3.0000 1.0000
SIGU = 13CC00. SC = 1.00 SU = 1.00 PHI = 0.10E-03
= Ue - = . - c = . ” = . [*)r'd
TAU = C.0 T8l = 2469.0 XLG = 1,000 RO = 0. 0

“XT2) = 1,000  X(4) = 2.000 “THET 0.250€ 02

lL?Hk

T "C.25TO0000E 02  C.IZ276%97E 02 ~ ~  0.I27T6997E 02 |~

=  J.9535E 07

0.22936SCE C2

- L Jrio

T T 0.T936527€ 02
 0.193331%€ C2.

THETA=

Ge 198664 GE CZ

YK = 0.4763E 13 XM = 0.6503E-04

Q.5114078E 0, 0.5114078E Ol

e e | b e e e - s 4

SR LIV D R (R

CI 0.2253933E OI
0.12931135 cl 0.1283113€ C1l

0.102R35%E O  ~ 0.1028359€ OL ~ ~ = ~— ~

C.1000_c4E 0! 0.10003645 Ccl

C.1$33C2€ 02

OMEGA = 0.100C00E Ol

4
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PROGRAN CAPSUL
DIMENSION SIGMA(S00)s TE(S00)e YHETALSOG), THETBI(S00), SicB(500!
[ N TH(S00!+ DLSGL500) —

COFMON/CCN/ Ky SICUe ALPHA. YK> XMe PHI, Co DELTA., DELOME, THMAX,
LTAlU, TRl. T82. XLO, Roiva(alo GAMMA, RRs Eo PSe TSe He ZM, LAMBDA,
2TA. NO, X(9)s P(9)s XKI10)s As ETA BETA, TNIT, TERM, T8, SC, SU.
INe NNe DELTHe AV2e NMAX: Lo MWl, ®2s W3s THET, WU, TAl

REAL LANMBDA, L

COMMCN/MAX/I XM AL AP, ALF(L19),C,CSQ.0HoWH

ECUIVALENCE (XK(1),0MEGA)

_COMMCN/LIM/X4Us X4Le R3Us R3L

CNMMCN/NIC/CRIT. NITER. ITER
_COMPGAN/DELS/DELRO. DELX2e DELX4

CCPMON/CCNVG 7XX(19¢1) s RR<LMOSTLSTOP.JNAY G

Cess YARJFARLES USED IN THIS PROGRAM FOR DEC:DING OPTVi1ONS
MOPT CECIDES ON SEQUENCE TO USE
MOPT=]1 LSTSO IS USEU ALONE
MCPT=2 LSTSO. MAX. LIMIT, AND DF ARE USED
MOPT=3 MAX. LIMIT. AND DF ARE USECD
MOPT=4 THETA ALCNE IS USED
-CICES CN SECUENCE TO USE IN MAX
NMAX=] THREE INDEPENDENT VARIABLES
NMAX=2 X(&) IS SPECIFIED
NFAX=3 R(8) 1S CCNSTANT
NMAX=4 R(3) 1S CONSTANT
NMAX=5 RZFRO IS TO 8L: COMPUTED
NQ CFCICFS FUNCTICON TO BE MAXIMIZED
NO=1 POWER/PROJECTED AREA
ANO=2 POWFR/VOLUME OF CIRCUMSCRIBED RECTANGULAR PARALLELEPIPED
NO=3 PONER/WFIGHT .
90 REACISC.100) »0PT, NMAX. NO
NNN=1
IF(ECPT-1) 13.10.91 -
Ces:® COMMCN CONSIANTS FOR MOPT=2.3.AND & FOLLOW

—

nnnpﬂpﬂPh 232 X212l

READ(S0e111) TB.AETABETADELTA oGoTAL

____READ(5C+150) LAMBDAN.NN

RFADIS50¢112) (X(1)el=1eS)e(PlIDoS=1e9)elXx([},I=2,10)

180 FORMAT{312)

11C FORFPAT(3F10.0}

111 FORPAT(RFI0.0)
112 FORFAT(SFB8.0)
150 FGRMAT(ELO0.3., 213) _
WRITF(S1.892) TA., A, ETA, RETA, DELTA. Ce Go GAMMA, RRe Es PSe TS,
1 He 7M, TA, TAl. LAMSDA., N« NRH _ _

892 FORMATICITR ="oFT7ele5Xe®A =" FLlO0LleSXo'ETA =',F5.l.5X.'B§IA =%,
1FBebe/e® NFLTA ='FBo%oe5Ke%'C =" ¢F602¢5X0°G ="9F6.2¢5X+"GAMMA =9, ’_
P2F542¢7¢® RR =" oFlCealeSXe"E =eFTa305Xe*PS =V ,F6.2¢5Xe*'TS =%,Fb6.1,
3/¢" H 29 ,F12.3¢5%0%'7ZM =0, FTe)eSXe"TA = oFTaleS5Xe*'TAL =FT7. 1o




&6/¢° LAMRDA =°oC15:5¢5Xe*N =%,1445Xe* NN =°.]4)
WRITFI(S]1.890) MOPT.NMAX,NQ
MAT ALPHA =,E15,.5 SH XM =.E15.5+/+5H YK =<E15.5)
R90 FORMAT(*OMOPT =2 135X " NMAX =°,[3,5Xs*'NQ =°.13)
WRITFIS1.891) (X(1)el=1e9)eiPlI) I=1e%)o(XK([)y!=2,10)
A9! FORMAT(COTHF FOLLOWING THREE ROWS ARE THE CONTENTS OF THE X. P, AN
1IN XK ARRAYS®*.//,(9F12,4)) i
GO 70 (10.10.,20.30), NOPT
Le¢s ( S R LS RQUT s -
10 RFADIS0.101) Ko SIGUe GAMMA, (SIGMAC!)eTUIDoTHETAC(I }oI=NNNoK)
IFIK.FC.0) GO TO 9% L
IOI FORNMAT ‘l?o?Flc 0./(3F20.C!?)
CALL LSTSO (KeSIGUGAMMAGS IGMAToTHETAAALPHA ¢ XMoXKO)
SF) TH=0.0
SE48G=0,0
D01 139 I=j.X
EX=).C/XP/7(1)
THETREI )= ,O/xxe( ,CLEALPHA/SIGMA({ I )/SIGU)sSEXS(SIGU*e
1 GAMMA-SIGMAL ) )~-.. "OS(EX/GAMMA) #100,.0%EX
= ASeGaMMAS SOGAMMA )/ (ALPHASSGAMMA ¢+ SIGUERGAMMAS®
1IXKOSTHETA(T ) )eS(GAMMASXMET (1)) ) )*e(1.0/GAMMA)
__ LrPE) =T(12e2L0G)CIXKO*THETALL))
DLSGIII=ALOGIO(SIGMALLN/SIGB(L))

SELSG=SELSG*(PLSG(1)) =2
NLTHC I '=ALCGLT {THETALL)/THETBLL )
M= e M 8
RESIG=RESIG +((SIGMA(I)-SIGRLI))I®**2)/SIGB!1)*e2
_ 1109 CONVINMUE
ﬁFllHlSOR'lSELTHI(a-3 0))
SELSG=SORY (SELSG/(Kk-3.0))

RESIG=SORT(RESIG/(K=3)) :
TE(S51.522 SIGUes GAMMA, ALPHA, XM, XXO¢ SELTH. SELSG.

IKESIGe (T SIGMA(TIYe T{I). THFTAlLle LMPII), THETB(I), SIGB(1).

20LTH(E), DLSG(L)e J=l.K) _
§22 FORMAT(1IK 2°,14:5Xe°SIGU =°FR.0:5XeGANMA =% ,F5,2 o/,

1° ALPHA =° E]5.6e5X XN 2° EL15,605X¢°XK0 =*E15:60/0¢

' SFLTH =% E15.,6.5X«*SELSG ..ot150005XQ‘RESlG "oflsobollc

3° 1% T6:°SIGMALT) Va6 °TEi)oT23- '!HE"!I!"tzﬂz.s"P‘l"

G751 THRFIBITII® e TOO6*SIGBIL)* e T8O« "OLTHII)®* o T4, 'DLSC(1i%e/

S(]4eFSc0eFTa0eF1l1e6202XeE12:592X9E220502XKeE12:5:2XsEL12.5¢2X,E12,.5))

NNN=K+1

60 TC )0
9% GO TN (90.25).M0OPT
Cees CONSTANES FOR USE 1IN MAX
20 READISC.110) ALPHAYK XM
_ WAITF(S51:103!) ALPHA, XM, YX
25 COMNTINUE
RFAT(S0.11)) X&U. X&Lo R3U, R3L
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WPRITE(S51,1260) X4U, X4L- R3U, R3L
126 FORMAT(0X4U =9 cF6.3.5K+" XL =",Fh.3,5X¢"RIU =',F6.3,5X,°R3L =7,

3)
RFAD(S0.241) SIGU., SCe SU. PHI, CQ DELROs DELXZ2+ DELX&, TAU, y 181,
. 1TR2, XLUy RO. X€2)0 X(&)e VHEY B
241 FORMAT(4E2G.0)
WRITE(S]1.242) SIGU., SCs SUe PHI., Q. DCLRD, DELX2, DELXQ. TAU, TB1.,
ITR?2e XLDe ROe X{2)e X{(&)e THET
0SICY =°Fl0.0e5X°SC =*,F5.,295X,°SV TO'F5.,2:549*PH] =¢,
1E10.2e7¢® O 2% F10.2:5%«°DELRO = E10.2+5X+"DELX2 ="EL10.2¢5Xs
z.ﬂle‘ -'ElO,ZL[,‘ TAU ='gEll.1L§}.'IBR 8'.F§.0.5!.'!ngfiofgngﬁ}
IUIN =2'FOhelel/e® RO = 4F6.3¢5Xe'%X(2) =, F6.3:5Xe"'"X(4) =°F6.3¢5X,
Q'THETA =°,E]2.4) ) N
RFAD(50:407) IXe MLAM. NITER, ITER, LMOST, Go Ce¢ CRIT, ALAM
Q) -
WRITE(S1.4C3)IXe NLAM, NITER, [TYER, LMOST, Go Lo CRIY, ALAM
403 FORMAT(®0IX =°oJ6oSXo'NLAM =°, 14 ¢SXe*NITER =',14:,5X,*ITER =°]4¢5X,
LOIMOST =29,]40e7° G =2°F6a3e5Xe'C ='F6.3e5X:*CRIT ='FB.5:.5X¢ *ALAM =%,
2 F6.3)

QOC NMAXI=NMAX
p— Y.L}
CaLL VSU
__61 Cali DR
JAP=JAMNe ]
_ IF{JAK.GT.100) GO TO 66 _
IFILR.GT.4.0) 62.62
EINH.LT.0,3) 64,65 ~ _
65 KRITF(S1e6) ROe (RUI)eI=1e8)e Lo AV2, Wle W2s W3, WT
60 TN 90
62 X(2) = C.55*x(2)
CALL VSU
GG T0O 61
64 X(?) = 1.05%x(."
Xi&) = 0.95*X(4)
___CALL vsu
G0 TO 61
65 _CONTINUEF
CALL MAX(NLAM)
AOl=NC 8§ NC=0
CALL ®WR
CAIL LINIT S
KC=hQ1
WRITE(Sl<4) ROe (RUI)el=]1eB)s Lo ‘V?g_ﬁ!s wZ- UB. H'
6 FORMAT(*ORADI] ARE® ¢9F10.507¢" L ='EL2.5:3Xe®AV? =°,E12.5,3X,
1°W] ='eF)2.5¢3Xe"H2 =,E12,%.3.00'°W3 ='oE12.543Xe'WT =*,EL12.5)
IFINFAX.FC.NMAX]) SC.900
Cese THF FOLLOWING ARE THE CONSTANYS USEC IN CALCULATING THETA
30 RFEARISC.110) ALPHAYKR XM
RFALISC.210) SIGUe SCe SU. PHI. Oy USLTH, DELOME, THMAX, TAU, TRl,




60

1 _ XLBe ROe X(2)s X(&)oTHET = Smr e e oo s s g
210 FORMAT (4F20.0)
WRITF(S1231) SIGYs SCo SU; PHIe Qs VELTH, OELOME. THMAX, TAU.

1 TRAY. Y_DBo RCe X{2)s X(6)e THFT, ALPHA, YK, XM
211 FUORMAT('0SIGU ='F10.0+5Xc?SC 29 4F5:2:5X0%SU =?,F5,2,5Xs'PH]I =¢,
1 FIN2e/e® Q =%, H1Ce 205‘0.UF1'H "cFlo ZQqXO.DELOMF -'.EIO 2'
25Xo THMAY =%, F10.3,/+ TAU =%y E10e345Xs* 18] =9FR,1,5X¢*XLD =%,
FT7.3.5%X¢"°RC *'Fﬁ 30/ X(Z’ "0F603usx'.x|4, 2 FheIe SN THET =,
& F172:34/76°" Qk?"l "-glz L+5Xe' YK -'oglg.boSXo'XM =2V El2.4)
CALlI [TwFTaAC
 _WRITE(51472) THET.CMEGA o
1 &4 FanAt('OIHFIAc'FIS 605!0'U”EG‘ -'ElS.bl
G070 90
13 ENC

SLAROUTINF LSTSG (KeSIGUGAMMASIGMAT.THETA,ALPHA, XM, XKO)
DIPENSION STGMAISCO)s TUSG0)e THETA(SGO)e Y(500)s Z(500)s
1 A€63.3). HI1I) ' '
SIG = SiGUS*GAMMA
LN IC J=].K
SIGL = SIGPA(L)**GAMMA
Y(I) = ALOGISIG®SIGIZ(SIG=-SIGI))
16 7810 = TEI)*aLOG(THETA(I))
DO 20 I=1.3 & «(1) = C.C
0620 =13
70 All..l320,0

oc 3¢ I=}.x

Al1.2) = A(]1.2?2) ¢ T(I)

All.3) = AtLL.3) ¢ 211)

AP ?2) = A(2:7) ¢ T(l)ee2

Al2.3) = A(2.3) ¢ TiL)®2(]) _
213.3) = A(3.3) ¢ 7(1)%e2

X()) = xi]) = Ve})
Xt2) = X(?2) - TiL)svil)

30 x¢3) = x€3) - 2¢13*v(])

A1) = ~K 3 Al2.1) = =A(1o2)
Af3e]) = -Alle3) 8 2(3.2) = A(2.3)
CAlY MATCIAXec3.1.,CFT53.3)

= = A3= )
ALPHA = EXP(AL/GAMMA)

___ XM= A3I/GAFPA
XKCstXP{A2/GANMMA/XN)
RETURN
FNT

SURRCUTINF CUGAVERTINMAX X o ALF.RRO)
____CIMFNSION X(9)e ALFL]19).R(8B)
GO YC (10.20.30.4C:50) «NMAX
1C RO=ALFI(L)
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X(2)=ALF(2)
X(4)=ALF(3}
RETURN
20 RO=ALF(1)
—_XE€2)=ALF(?2)
RETURN
30 _X{(2)=ALF(])
X(4)=ALF(2) :
RO=R(B)-X(1)-X12)=X(3)-X({4)-X{5)-X(6)-X(7)-X(8)
RETURN
40 _X(2)=ALF(])
X(4)=ALF(2)
RO=R(3)=X(1)=Xx(2)-X(3)
RFTURN
50 X(2)=8LF())
X(4)=ALF(2)
_CALL RZERD
RFTURN
ENC

SURROQUTINE WR :

COMMON/MAX/ I XM ALAMALF(197?+CoeCSQsDHeWH
___CCPPON/CCN/ Ko SIGLe ALPHA, VKe XM, FHIe Q¢ DELTAe. OFLCMEs THMAX,

1TAU. TRl. TR?. XLDs KOs R{B)e GAMMA, RR, E, PS, TS, H, ZM, LAMRDA,
_ 2TAe NQe X(9)s P(9)s XK(L0)s As ETAe BETA, TNIT, TERMe T8, SCs SUs

3INe NNe DELTHe AV2. NMAX, Lo Wi W2, “3} THET, WT, TAl

REAL LAMPDA. L :

CALL CCNVERTINMAXeXeALFsKoRO)

REI)=ROeX())

CO «C [=2,.8
40 RIIV=REI-1D4X(1)

X1 222 .08 (XLD=.5T5)*R{IBI= 5% (L 0¢R(4))-2.02{X(L)+X(9))

AV2=A*X) 2%3,1415G*%(R(2) *%2~ R(l)‘*Z’

GO TO (1C.2C.3C) NC
10 WH = AV2/(4.0%XLDER(3)*(2(B) + BETA‘,

"IFINC.ANF.0) RETURN

Wl=ht . S
20 WH = AV2/0R.0*XLL%*R(B)*(R(8B) + BETA)I*(R(BR) + DELTA))

1F(AG.AF.0) RETUKN

W2=wi
30 CALL WHT

Wl = AV2/6T

LEES )

RFTURN

END

SURRCUTINE wHT -
COMMCN/CCN/ Ko STGUe ALPHA, YKo XM, PHI, Q, DELTA. DELCME, THMAX,
1TAlls TRle TR2+ XLDe RCe R{(B}e GAMMA, RRs Ee PS, 'SO__"‘__-___Z_”_{__‘_._A"BUA!
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_2TA« NQ« X(Q)c P‘Q'o !K‘LQLt_Ax‘Efﬂg HETAH, TN‘T' TE&ﬂp 1ﬂx_§§l SUO

IN. NNo DELTH. AV2, NMAXs Lo Wle W2e W3 THET, WT, TAL
REAL Lel2+L4sVI(S)

L = 2.08XLU%R(A)

L4 = 2.CH(XLD - .575)%R(8)

L7 = L4 - 5%(1.C + R(4)) = 2.0%(X(1) + X(9))
R(1) = RC + X(1*
CO 6C I = 2.8

60 R(I1) = REI-1) + ¥([)

VO = 3,1416%RU4%7%L2 + 2,4CS*((R(2, AK(S))I*%3) + [.5708%((R(3;~
L XK(9))**2)%(1,C+R(4))

VL) = 3.1416%(L2 + 2.,0*X(1))1*(R(1)*%2 - RO**2)

V2! = 3.14)A%L2%(R{2)%%2 - R(1)**2) B

V(3) = 9.14169012 + 2.00X( 1118 (K(3) 497 = R(ZV#%27 "

V(4) = 3,]4l68L4*K(4)%%2 ¢ 2.409%R(4)¢*3 - V(1) - V(2) - Vi3)

1 - €.7H37R(3)742%#X(9) - VC

VES) = 3.1416%L45(RI5)%%2 - R(4)*%#2) + 2,409%(R(5)%33 - R{4)%%3}
VI6) = 3.1416%L4*(R(6)#%2 - R(5)%%2) + 2.409%(R(61%%3 - R(5)%%3)
VIT) = 3.14106%(L —575%RIB)IX(R(TI**2 - R(6)*%2) + 3,1416%R(T)*42

1 *XI7) + 1.204%(R(7)%%3 - R(6)*%3)
VIB) = 3.1416%(L =.575%R(8)I*(R(B)*32 - R(T)*#2) + 3,1416%R(B)*#2

1 #X(AR) ¢ 1.204%(R(8)*%3 - R(7)%%3)
VIQ) = 6.2R3ICR(3)*¢2%X(9)

WT = 0.0
00 79 I=1.9

70 WT = wl ¢ VI(I1)*P(1)
RETURN

END

SURROUT INF VSU _ '
COMPCN/CON/ Ko SIGU. ALPHA, YKo XM, PHI, O, DELTA, DELCME, THMAX,

1TAU. TAl, T2, XLDe ROe RiB)s GAMMA, RRy Es» PS, TSy He ZM, LAMBOA,
2TAe NCe X(9)s P(%). KK(LQ,Q As g"o BETAe. TNIT, TERM, TKe SCe SU,

INe NNo NDELTH- Y2+ NMAXe Lo Wle W2e W3, THET, WT-. TAl
COMMUIN/SETUP /Mo NeWFL(19),UED(19) s WSOI19419)sDSO(19,19),L5ELEL19) o WEL

1019) ,
CCMMON/MAX/TXeMe ALAMSALF(19)4CeCSQeCHaWH

COMMCN/DFLS/DFLRO. DELX?, DELX4
TERM=THETSTNIT=0,0

GO TO (10:20430040450) s NMAY
10 DFIL (1)=WEL(1)=DELRO

DELI2)=WEL(2)=NELXZ -
REL(3)=wFL(3)=RELX%

ALF{1)=R0
ALE(2)=X(2)

ALF(3)=X(4)
I1X=3

RETURN
20 DFIL (1 )=wEL (] '=DELRO




TELE2)=WFLIZ)=DLLX?
AL F{11=R0
ALF(2)=Xi2.

30

IX=2

REURN

DELE1Y=wEL (1)=06CLX2
DELE2Y=wEL(2)=DELX4
ALF(L)=X(?)

Al F(2)=Xx14)

40

iX=7

RFTURN
DELCY)=WEL(1)=DELX?
CFE(?2)=wWFL(2)=DiEL XY
RO=KR(3)=-X(1)-X(2)-X(3)
ALF“]1)=Xx(2i

50

ALF12)=X(4)
ir=2__
RETURN
CELUDI-WEL(L1)=DELX?
DEL(2)=WEL(?2)=DELXA
ALF(])V=Xx(2)

IX=2

ALF(?2)=X{4)

RFTURN

FND

SURRQUTINE KZFRD

COMMON/CON, K. SIGUes ALPHA, YKe XM, PHI+. Qo DELTA, DELOME, THMAX,

—__1TAU.
it

fAl. TA?+ XLCe ROe R(B)e GAMMA, RRe Eo PSs TSy He Zs LAMBOA,

NOe X(9)e P(9)s XKL10)s Ae ETA, BETA, TNIT, TERM, T8, SCs SU,

2Ne NNo. DELTH, AV?. NMAXe Lo Wle W2s W3, THET, WT, TAl

REAS

L2

C*** SUBROUTINE CALCULATFS A RO BY NEWTONS METHOD

M=0

___HSIN : i
B 7 2.0%xK{10)*XLD*(T82 - TA)/A /HSIN

RO =
35 R{R)
co 1

= ALOGIALD ¢ SORTIXLD*#*2 ¢ 1.C))

B/4.C¥X(2)%(XiD~-.825)) = X(1) - X(2)/2.r
= RO
0 I=1.8

1C R(A8)
1?2 =
1X(4)
vV2PI
IFQA
30_C_=

= Rid) + X(1)

2.0€({XLD = .575)*%R{8) =~ .5*(1.C + RO + X(1) + X(2) + X(3) +
) = 2.0%{X(1) ¢ X(9))
F = L2%{2.,0*X(?2)*(RO + X(1)) ¢ X(2})%#*2) S

BSC((R*R(B)-V2PIE)/B/R(8)).GT.1.0E-6} 30, 31
RO —(R*R{BI-V2PIE)/(P-2.0%(X)D-.825}" 12.%X(2)*(RO+Xil)i+

1X(2)
M=M4+
IF(M
Ga T

*%2) - 2.0%X(2)%L2)
1 L
«G7.10) GO TO 31
€ 145




6l

31 CONTINUE
JEIROLGTL0.0) RETURN
— T
RETURN
ENY

SUBRCUTINE LIMIT
COMMON/LIMZXGUs X4l o KR3U. R3L
COMMCON/CUON/ Ko SIGJs ALPHAS YKy XMy Prile Qs DELTA, UDELOME, THMAX,
1TAUe 1Ble THZ2e XLDe RU- R!B)e GAMMA, RRy E4 S,y TSe He 74 LAMBRDA,
2TA. NU. XUS9)e P(9), XK(10)s A, ETA, BETA, TNIT, TERM, T8, 5C, SU,
INo NNe NELTH, AV?2e NMAXe Le Wle W2 W3, THET, WT, TAl
GO TO (1Ce?N0e30) ¢ NMAX
10 TFEX(4)GToX4U) 40450
40 X{a) = X4l & NMAX = 2
RFTURN
50 TF(X(4)alToeX4l) 6Coe70
60 X(4) = X4l .4 NmAX= 2
RF TURN S
70 TFIR{3).GT.R3U) HGCWs 90
A0 R(E3) = R3U $ NMAX = 4
RFTURN
GO0 IFIR(3).LT.R4L) 1CCs 110
100 R(3) = R3L. ¢ NMAX=4
110 RFTURN - S , . -
20 TF(R(3}aTeR3U) 170, 130
170 R(3) = R3U_$ GU TO 160
130 TF(R(3) 1 ToFPa) 160, 195D
140 R(3) = R3L $ GU TO 160
i50 RFTURN
160 RO = R(3) — X(1) - X(2) = x(3)
CAaLl DF
RETURN .
30 TFIX(4).GTX4U) 170,180
170 X(4) = Xx41 ¢ GO T 210
180 TFix(4)alToX4lL) 19C,200
190 X(4) = X4l & GO TN 210
200 RFTURN
21C CAil _DF
RFTURN
FNOD

_ _SURRCUTIANE CF _ : ams
COMMON/MAX/ T XM ALAMGALF(19)4CeCSQ.0CHsWH
COMMON/GCON/ Ko SIGU. ALPHA, YKs XM, PHI, Qs DELTA, DELOME, THMAX,
ITAUU. TAl. TA?2, XLDs ROs R(8)se GAMMA, RRy =y PSy TS, Hey Zs LAMBDA,
2TA. NQs X{9)¢ P(9)s XK(L10OVse Ay ETA, 3ETA, TNIT,; TERM, T8, SCy» SU,
3N. NNo DFLTH. AV?2e NMAXe Ls wle W2s W3, THET, WT, TAl
COMMON/DELS/DELRO. ODFL X2y DELX%
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33 CALL DR
Ri=Nk
L _IFIABS(01=1.0).iF.Q) 304 31
4 X(7) = X(2) + DELX?

10

CALEL DR

Xt2) = Xt2) ~ DrlX? = (Cl=1.0)/7{UK-CL)*DELXZ
GU TO(I0-10e39) 4NMAK

RO=R{AI=X{1I=-X(2)=X(13)

GO _TQ 23

30

RFTURN

_eND

SURROUTINFE THETAC )
COMMON/MAX /T XeMoeALAMAALF (19)4CoCSQeyDHewH
EQUIVALENCE (XK(1)+UMEGA.

CUMMON/CCON/ Ko SIGUs ALPPA, YKo XM, PHIs Qo DELTA, DELO

1TAlie TRP1. TAZs XLDw ROy R(B)y GAMMA, RR,y Es PS,

?2TAe NCe X(G)e P(9)e XK(10)s Ae ETA, BETA, TNIT,

TS' H.
TERM, T

3INe NMs DELTHe AV2s NMAXs Lo Wle W2, W3, THET, WT, TAIl

RFAL LAMPDA, L
NSTCP=N & TBO=18

ME, THMAX.
IZMy LAMBDA,
Bs SCa SU,

_N3=C4=TNIT=0.0

TAC=TA

L=0

OMEGA =1.0
SC1 = SC ¢« SULI = SuU
TERM=TAU $ N=NN

IF(TNiT.EQ.TERM) GO TO 10
CALL DR

10

L3 = OH
TNIT=TAU $& T8=T181

20

TA=TAI
TERM=THFET $ N=NSTOR

100 FOKMAT(3F20.7)

CALI DR
D4 = NH+D3
WRITF(51+1C0V THET,D44DH

IFiN4.LTo1.0.AND<THFTGELTHMAX) GO TC 40
IF(ARS(N4=1.0) JLE.GC) RETURN

4C

TFRM = TERM + DELTH
CALL DR
N5=N3+0H

THET = TERM = DFLTH - (D4—1.C)*DELTH/{D5-D4)
GO 10 20
INIT=C.0 & TA=TA8O

TA=TAO

_TERM=TAU $ N=NN
OMEGA1=CMEGA tOFLCME
SC=0MFGA1#SC! § SU=OMEGAL*SUl




_.__EB3=C4=0.C -
IF(INIT.EC.TERM) GC TO 41
CAll ECR
C3=CH
___SC=0MFGAFSC]1 $§ SU=CMEGA*SU]
CALL CR
____LC4=0CH L
41 TNIT=TAU $ [8=T81
TA=TAI
TFRM=THMAX $ N=ASTCR
SC=CMFGA1*SC] $ Su=CMEGA]1=*SUl
CAIL CR
LS=CH 3
SC=CrirGA*SC1 $ SU=CHEGA*SU1
CALL DR
C6=Ck
N9=C42C6
WRITE(51.100) TFRM, D9, GMEGA
IFIARS(L4+D6—-1.6G).GT.0) 30, 31
30 OMFGA=CMFGA - (L44C6-1.0)*DELUME/(D2405-B4-D6)
L=1+1
TF(l .GT.10) 31. 4&C
31 THET = TERM
RF7uURN
ENC

SURRCUTINE_CR
COFMCN/CTON/ Ko SIGU. ALPHA, YK, ¥M, PHI. Q. DELTA, DELGMEs, THHAX,
IIAU. ‘81' TB?. ‘LD. RO. R(B)o GA’"A! RR' ED PSO tS' He l"! LAPRDA'
?TA. NO. X(9), PI(9)e XK(1(C)e A, ETA, BETA. TRIT, TERM, T8, SC, SU,
3Ne KENe PELTH., AV2, NMAX, L. wle. w2e W3e. THET, Wl. TAl
COPROR/PAX/IXeMALAM.ALF(19).C.CSQsCH.WH
REAL | SMPLA, Lol 7214
EQUIVAL ENCE (XKC.YK)s (AQ.A.A2)
CIFF=TERP-TNIT
IFINFAX NF.UO.AND.NC.NE.O) CALL CCUNVERT(NMAX.XsALF+RsRC)
D1=SUr=C.0 $ NT=1
R{l) = X(1) + RO
110 5C_8G_[=2.8
8C R(I: = RUI-1) + X(I)
__ D0_190 J=4.8
190 SUM = SUM + L.O/XK{J)I*ALCGIR(JI/RI(JI-1))
H 4 2.08(XLD —575)FR{3) — 5%{1.0¢R(2)} - 2,0%(X(1) *+ X(9))
VO 3. 14616%RCE$2EL2 + 2.40S%((R(3}-XK(S))*%3) + 1.5708*((R(3)-
1 XK{S))*+2)%{1.C+R(&))
V2 = 3.14159%12%(R(2)%%2 — R{l)*%x2)
T40=TA+(TR-TA+AXV2/6.2832/L 2%SUM) o
TO = T4U + AQXV2/(€.283168%L2¢XK(3)*ALCGIR(3)/R(2)) + AQ/4.0/XK(2)
T#{R(21%¢2 — R{1)*%2 - 2#R{1)s*2%ALOGIR{2)/R(1)))
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Gl =RR/E/(VC + ETASV2)*(R(4)**2 ¢ R(3)*%2)/(R(4)**2 - R(3)**2)
o C2 = T8 - TA & A2%V2/6.28318/7/L2%35UM
_C2 = 0,C $ N1 = N

C3I=PSE(VO+ETA*V2)/RR/TS
C4=P(2)eV20H/IM —
CALL SFTFAULT(5,.5HEU=-1)

D0 _SC T=INIT.TERM.CIFF

SIGT = CI#(C3 + C4*(1.0 — FXPi—-LAKBDA*T)))*(TA +(T0 - TA)®
LEXP (~LAMRDA®T) )

Te = TA + C2%EXP(-LAMBDA®*T)
90 Dt = D1 ¢ XKO*(SC**GAMMASS[CU**GAMMASSIGT*##GAMMa/ALPHASSGAMMA/
1 (STIGU**GAMMA — SUSGAMMASSIGT**GANMA} ) ##(1.0/GAMMA/XM/T4)
SIGG = SIGU**GAMMA $ SUGA = SUXSGAMMA L
3027 NPT = 1 $ N2 = 0.0

DG 16 J=1.N1-1

EX=FXP(-LANBDAS(TNIT+J*QIFF/N1))
29 SIGY = C1*(C3 + C4¥(1.0 — EX)I*(TA «(T0O - TA)*EX)

T4 = TA ¢ C2%EX

F _=XXK0*(SC*SGLMMAXSIGG*SIGT**GAMMA/ALPHA®SGAMMA/(SIGG ~ SUGA®
1 SIGT**GAMMNA) ) *%x( ] .0/GAMMA/ XN/ T4)

GO 10 (J1.12),NPT

11 B2 = D? < 4.C*#F $ NPT = 2 $ GO TO 10
12 D2 = D2 ¢+ 2.0%F $ NPT =1

10 CONTINUE
GO _TO (300.301).NT

3CC D3=DIFF*(C1¢02)/3.0/N1 $ N1=2%N1 SNT=2 $ GC TO 302
301 D2=D1+N2 $ D2=DIFF*D27/3.0/N1

IF(ABSI(C2-C5:/02).LT.PHI) 3C4. 3C5
305 D3 = D2 $ N1=2*Nl

IFINI.GT.16%N) 326, 302
306 MRITF(S1.247)

247 FGRMAT(® FAILED ') CCNVERGE')

304 DH = D2
CALL SFTFALLT(4.4nEU=0)
END

SURROUTINE MAX(NLAM)

COCMMCN/CONVG/XX(191) eRKLMIST,LSTOP,JWAY G
COMMON/MAX /1 XeMoALAMALF(19).CeCSQCH, Wk

CCMMON/MATO/AT19:19) e X{19«1)¢NR,YSQ,Z
COMMGN/NIC/CRIT. NITER. ITER

CRITSC=CRIT*#2
CS2=C*L

NR=IX+1
M=1

4 CALL SETUP
IF(NLAM)10.5.10

S CALL GTALAM
FIRST LANBCA COMPUTED IN SUBR. GTALAM

o




. NLam=1_ .
C FIRST LAMEDA FRCOM INPUT
10 CALL _VFCT _

CALL CCNNG

CALL OQUuTPUT _ ,

IF(UWAY}100.30,.12
172 IFINITER)LS.'5.20C

3 TEST ON NUMBE+ CF CUIER iTERATICN
15 [F{M=ITER)?5..5.100
C CCANVERFNCE CRITERILA TESH

20 TF!'7-CRITSQ)1C0.,100,15
25 CALL ARITH
CAlL MATCIAX+MNRo1.CETH19.18G)
N=M¢+]
LSTCP=C
30 CALL STFP
GG TC 4
1CO RFTURN
rND MAX

SUBRCUTINF SETUP
COMMCN/SETUP/wWeDoAFD(19) 3OFD(L1S) o WSCI19413).DSD(19+19i+LELI19)4WEL

1i19)
CONNON/MAX/TXeMoALAN ALF(191 -CeCSCeChoWh

€  COMPUTFS QUANGITIFS IN LABELFD COMMCN SETUP B
CAL1I DR

c COMPUTE FIRST AMC SECOND DERIVATIVES OF FCN D
N=0F

L9 40 I=1.1X
SINRT=ALF(1)
ELFLT)=ALF(T)+CEL( )
CALL R

CP= K
ALF{I!=STCRI-DEL(I)

__ _DEDUI)=(CP-DM)/(Z.%0ELLID) , <
NDSDIT.1)=(DP+DM=2 . %20 ) 7/ (DREL( [ )*%2)
J=1
4 TFLTIX=J140,1,1
_ V1 IFtJ-T11i3.3.2
13 DSNET.01=0SN(JT)
3 Jd=J+1
GO TC 4
STORJ=ALF{J)
ALFIJ)=ALF{J)=-DEL(Y)
CALL DR
£3=Nk
ALF(J)=SIORJ+CELI{J)

A
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CALL_OR

0?2=DK
ALF(I)=STOR!4DEL(")

CALL CR
Cl=CH

ALF(J)=STCRJ-DELIJ)
CALL DR

D4=CH
ALF(T1}=STCRI-DEL(T)

ALF(J)=STCRJ
DSDUi+J)=(D1+D3-D?-D4)/(4.*CELCTI*DEL(J)?

40

GO TO 3
ALF(TI)=STORI

CALL WR
COMPUTE FIRST AND SECOND DERIVATIVES OF FCN W

W=WH
DC 60 I=1.1X

STCRI=ALFI(I)
ALFITI=ALF{T)+WEL(I)

CALL WR
WP=Wk

ALF(I?!=STORI-WELI(T)
CALL WR

WM=WH
WFD(ID)={WP-WM)/(2.2WEL(I))

WSO(T I )=(WP+WM=2.%W) /(WELTI)%*%2)
J=1

iIFIIX=-J160.21,.21
TF({J-T1121%.23.22

J=J+1

GO 10O 24
STCRJ=ALF(J)

Al F(J)=ALF(J)-WEL(J)
CALL WR

W3=wH s
ALFSJ)=STORJ+WEL(J)

CALL ®WR
W2=WH

ALFUI)=STORI+WEL(I)
CALL WR

Wl=wH
Al F(J)=STCRJ-WEL(J)

CALL wR
W4&=WH

ALF(T)=STORI-wEL (1)
Al F(J3=STCORJ

WSCUI «J)=(Wl+W3-w2-Wa) /(L. *WEL(I)*WEL{J))
GO TC 23
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RETURN
END

SUBRROUTINE GTALAM

COMMON/SETUP/W.CeWFD(19)¢DFD(19) WSD(19,19),0SD(19,19) +BEL(19),WEL
1(19) o -

COMMON/MAX/IXeMoALANGALF(19)¢C+CSOsDHoMH
COMPUTES AVERAGE LAMBDA FOR 1ST ITERATION

SUM=0.
DEN=C.

NO014J=1.1IX
IF(CFC(J))13.14.13

13

SUM=SUM+WFD(J)/CFO(J)
CEN=DEN+].

14

CONTINUE
IF(DEN)16.15416

15 CALL ERRCR
16 ALAM=SUM/DEN

RETURN
END

SURROUTINE VECT

COMMCN/MAX/TXoeMoeALAMJALF(19)+C+CSQ+DHeWH
COMMON/SETUP/We Do WFD(19) ¢GFD(19) s WSD(194+19) +DSD(19+19) 4DELI19),WFL

1{19)
CCMMCN/MATC/A(191S) e Y(19e1i+..ReYSQ,s2Z

AX=Y NR=1X+1
COMPUTES YJYSQO.AND 2

¥SQ=0.
DOi1SJ=1.1X

YiJdell=—(WFD(J)-ALAM®DFD(J))

15 ¥YSO=YSQ+Y(J.1)2Y(J,1)

Y(NR.1)=C-C
YSUZYSCEYINRL1) *#%2

Z=vIC/CSC
RETURN
END

SUBROUTINE CONVG
COMMON/CONVG/XX119¢1) sRKeLMOST4LSTOP.JWAYHG - L

COMMON/MAX/IXeMeALAMNALF(19),CsCSQeDHIWH
COMMON/MATO/A(13.19)eX(19+2)NR,YSCW2Z

TESTS WHETHER MCRE INNEk ITERATIONS ARE REQUESTEDN AND COMPUTES A
VECTOR INCREMENT ONt HALF THE MAGNITUDE OF THE LAST SUCH VECTCR

(2 Ns)

INCREMFENT TRIEC. I[F NEEUVDED
IF(M=-1) 1.7.8

1

CALL ERRCR

& IF(_NMCST.GT.0y GO T0 3
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? RK=YSOQ®G
JWAY=]
GC_T0 100
3 IF(YSC-RK)IZ.444
4 LSTEP=LSTOP+I
IF..MOST=-LSTOP)S4646
5 JWAY=-1
o0 70 1C0
6 DO T K=]eNR

100 RETURN

XX(Kel)=.5%XX{Kel)
7 »!f‘Kﬁo‘)=lX(qu)
JWAY=0

END

SURRODLT INE OQUTPLT
COMMCN/(CN/ Ke SIGUe. ALPHA, YKo XM, PHI, Q. DELTA, DELOME, THMAX,

1TAU. TBie TB?. X1D- ROy R(8), GAMMA, RRe Es» PSes TSe Ho ZM, LZMBDA,

 ?2T4e NQs X(9)s P(9). XKI10).ABCL.ETA, BETA. TNIT, TERMs, T8Bs SCy» SU,

3Me NNe DFLTH, AVZ, NMAXe Le Wle w2 W3, THET, WT, TAl
__COMMON/SETUP/W.D+WFD(19),0FD(19),WS0(19,19) vDSD(19,19),DEL(19)«

IWFL (19}
COMMCN/MATO/Ai19419)eY(1941)oNR,YSQ0Z B )

COMMON/MAX/TXeMcALAMGALF(19)4CeCSQsOH,WH
COMMCN/CONYG/XXI1941) RKoLMOSToLSTOPJWAY G

WRITF (Si+s1)MeDae¥YSQ.Z,LSTOP
! FORMAT(1HG3X2HM=15K,5H D=Fl4.6+5H W=El4.6+7H YSQ=El14.69

15H 7=FEl4.6,9H LSTOP=16}
_WRITE(S5142)(UY(TIs1)eALF(i))oI=14NR)

? FORMAT(IHO2F1646)
NO1=NC $ NC=0
CALL WR
NO=AC1

WRITF(S51+4) RCe (R(1)eI=196)s Lo AV2s Wls W2y W3y WT
4 FORMAT(®*ORADII ARE'+9F10e5¢/¢" L =*4E12.5¢3Xs*AV2 ="4E12.5+3X,
1oWL ='eF12.5e3Xs"W2 ="4E12e5¢3Xe*hN3 =% ,E12.5¢3Xe*'WT =',E12.5)
RETURN
END

SURRCUTINE AR:TH
COMMON/SFTUP/WeDeWFU(19) OFD(197 «WSD(19,19) 4DSD(19,19),DEL(19) 4 WEL
1019)

 COMHON/MLX/TX oMo ALAMGALF(19) CoCSGeTHoWE
COMMON/MATQ/4(19¢19)+X( 19413 NR,YSO,Z
COMPUTFES ELEMENTS OF MATRIX A. NR=IX+1

DO 10 I=1.1IX

RO 11 J=ielx -
11 A(T<Jb=wSD(! e J)-ALAMEOSD(!,J?

A(TNR)==NREDIT)




10 AINP -1 )=DFDI(T)
AINR.NR) =0,
RFETURN

END

SURF.OUTTIRE MATQUAXeNRoNVDET,iWA,NX)
DIMENSTON AL10)eX(10)

RPET=1.0

NRl=NR-1

DO 5 K=1,NR)
IR1=K+]
PIVOT=(0.0

DO & I=K.NR
Ix= (=1 )eNA¢]
7=APSF(hHLIK)?

JF(Z-PIVCT)16.647
1. PIvOT=7

FPR=1
_6 CONVINUE

TF(PIVOT)R.9.8
S DEYT=0,0

RETURN
8 IF(IPR-K)IC.11,10
10 DO 12 J=K.NR
_ _TPRJ=(J-1)*NA+IPR
7=A{IPRY)
KJ=(J=1)3NA+K

ALTPRJI=A(KI)
12 AtkJ)=2

DO 13 J=1.NV

IPRJ=(J=-1)&NX+1PR

7=X{IPRJ)
 KJ=(J-1)*NX+K

X{IPRJ)=X(KJ)
13 x(KJj)=2

DET=-DET
11 _KK=(K=]1)#*NA+K

DET~DET#*A(KK)
PjvOT=1.0/A¢{KK)

DO 14 J=IR1.NR
 KJ=(J=1)*NA+K

A(KJ)=A(KJ)*PIVOT
DO _14 T=IR1+NR

Td=(J-1)%NA+I
IK=(K—=1)®NA+]

14 ALTJI=ALTJII-ALIK)*A(KI)
NO_S J=1,4NV

KJd=(J=1)8NX+K
TFIX(KJD)) 155015




15 X{KJ)=X(KJ)I*PIVOT

o 4
|

DO 16 I=IR1.NR
IJ=(J-1)*NX+1]

IK=(K=1)*RA+|

16 XCI)=X(T15)-A(IK)*X(KJ)

5 CONTINUE
NRNR=(NR-1)*NA+NR

IF(A(NRNR)) 17.9.,17
17 _CET=DET*A(NRNR)

PIVOT=1.C/A(NRNR)
DO 18 J’l.Ny, o

NRJ={.J=1)*NX+NR
__X(NRJ)=X(NRJI*PIVOT

LO 18 K=14NRI

[ =NR-K

SUm¥=0.0
00 1S L=1.NR1

IL=L%*NA+]

= WJ=(J=11*NX*iL+1) et

19 SUM=SUK*A{ILI®=X(LJ)
ld=(j—-1)¢NX+]

S .| 3 11]. ]

18 X{IJ=X{TJ)-SUM

END

" SURROUTINE STEP
_CCMMON/CONVG/XX(1941) RK<LMOST LSTOP.JWAY WG

COMMON/MAX/TXoMoALAMGALFI1G)+CoCSOsCHoWH
COMMEN/YATC/AL1Y419) e X{19¢1)eNRYSQ o2

DIMENSION ALFX(19)
COMPUTES NFW ALPHAS AND LAMBDA. wR=IX+1

TF(JWAY)S.5.6
& 007K=1.NR

7T ALFIK)=ALF(K)=X(K.])
GO TC 11

9 ALF(NR)=ALAM
DOIOK!I._NR

XX(Kel)=X(Kel)
ALFX(KI=ALFIK)

11 ALAM=ALF(NR)

_ TF(ALF(K).LT.0.C) 19420

10 ALF(K)=ALF(K)+X{Ks1)

DO 20 K=1e1IX

19 ALF(K)=0.5%ALFX(K)
XX(Kel)=—1.0%ALF(K)

_ RFYURN

20 CONTINUF

END




	0002A03.TIF
	0002A04.TIF
	0002A05.TIF
	0002A06.TIF
	0002A07.TIF
	0002A08.TIF
	0002A09.TIF
	0002A10.TIF
	0002A11.TIF
	0002A12.JPG
	0002A12.TIF
	0002B01.TIF
	0002B02.TIF
	0002B03.JPG
	0002B04.JPG
	0002B05.JPG
	0002B06.JPG
	0002B07.JPG
	0002B08.JPG
	0002B09.JPG
	0002B10.JPG
	0002B11.JPG
	0002B12.JPG
	0002C01.JPG
	0002C02.JPG
	0002C03.JPG
	0002C04.JPG
	0002C05.JPG
	0002C06.JPG
	0002C07.JPG
	0002C08.JPG
	0002C09.JPG
	0002C10.JPG
	0002C11.JPG
	0002C12.JPG
	0002D01.JPG
	0002D02.JPG
	0002D03.JPG
	0002D04.JPG
	0002D05.JPG
	0002D06.JPG
	0002D07.JPG
	0002D08.JPG
	0002D09.JPG
	0002D10.JPG
	0002D11.JPG
	0002D12.JPG
	0002E01.JPG
	0002E02.JPG
	0002E03.JPG
	0002E04.JPG
	0002E05.JPG
	0002E06.JPG
	0002E07.JPG
	0002E08.JPG
	0002E09.JPG
	0002E10.JPG
	0002E11.JPG
	0002E12.JPG
	0003A03.JPG
	0003A04.JPG
	0003A05.JPG
	0003A06.JPG
	0003A07.JPG
	0003A08.JPG
	0003A09.JPG
	0003A10.JPG
	0003A11.JPG
	0003A12.JPG
	0003B01.JPG
	0003B02.JPG
	0003B03.JPG
	0003B04.JPG
	0003B05.JPG
	0003B06.JPG
	0003B07.JPG
	0003B08.JPG
	0004A03.JPG
	0004A04.JPG
	0004A05.JPG
	0004A06.JPG
	0004A07.JPG
	0004A08.JPG
	0004A09.JPG
	0004A10.JPG
	0004A11.JPG
	0004A12.JPG
	0004B01.JPG
	0004B02.JPG
	0004B03.JPG
	0004B04.JPG
	0004B05.JPG
	0004B06.JPG
	0004B07.JPG
	0004B08.JPG
	0004B09.JPG
	0004B10.JPG
	0004B11.JPG
	0004B12.JPG
	0004C01.JPG
	0004C02.JPG
	0004C03.JPG
	0004C04.JPG
	0004C05.JPG
	0004C06.JPG
	0004C07.JPG
	0004C08.JPG
	0004C09.JPG
	0004C10.JPG
	0004C11.JPG
	0004C12.JPG
	0004D01.JPG
	0004D02.JPG
	0004D03.JPG
	0004D04.JPG
	0004D05.JPG
	0004D06.JPG
	0004D07.JPG
	0004D08.JPG
	0004D09.JPG
	0004D10.JPG
	0004D11.JPG
	0004D12.JPG
	0004E01.JPG
	0004E02.JPG
	0004E03.JPG
	0004E04.JPG
	0004E05.JPG
	0004E06.JPG
	0004E07.JPG
	0004E08.JPG
	0004E09.JPG
	0004E10.JPG
	0004E11.JPG
	0004E12.JPG
	0006A01.JPG
	0007A02.JPG
	0007A03.JPG
	0007A04.JPG
	0007A05.JPG
	0007A06.JPG
	0007A07.JPG
	0007A08.JPG
	0007A09.JPG
	0007A10.JPG

